Decision-making Algorithm for Waste Recovery Options. Review on Textile Waste Derived Products

IF 1.4 Q4 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY
A. Zandberga, S. Kalniņš, J. Gušča
{"title":"Decision-making Algorithm for Waste Recovery Options. Review on Textile Waste Derived Products","authors":"A. Zandberga, S. Kalniņš, J. Gušča","doi":"10.2478/rtuect-2023-0011","DOIUrl":null,"url":null,"abstract":"Abstract As the volume of textile waste steadily increases, mechanical, chemical and biological technologies for textile waste recovery are evolving. Also, the legal framework of the European Union has stated the commitments for promoting the recycling of textile waste in the Member States. So far, however, no decision-making algorithms have been developed for the selection of products recovered from textile waste. Within the present study, a hybrid multi-criteria decision-making algorithm for evaluating textile waste recovered products has been developed applying seven circular economic criteria – ‘Circular economy approach of the technology’, ‘Added-value potential of final product’, ‘Share of textile waste in total waste feedstock’, ‘Diversity of textile mix suitable for specific technology’, ‘Pre-treatment of waste feedstock’, ‘Recovery potential’ and ‘Maturity of a recovery technology’. The weighting of the criteria was determined by eight waste management experts. The results of the expert-based criteria evaluation show that the most important criteria are ‘Added-value potential of final product’ and ‘Circular economy approach of the technology’. The developed decision-making methodology has been adapted to nine textile waste recovered products – compost, refuse-derived fuel, ethanol, glucose, building insulation material from cement and textile waste mix, building insulation material from denim textile waste, terephthalic acid, recovered cotton and recovered polyester. The multi-criteria, decision-making ranking of the products textile shows that the highest potential for products recovered from textile waste is for glucose and terephthalic acid, while the lowest – for ethanol, compost and refuse-derived fuel.","PeriodicalId":46053,"journal":{"name":"Environmental and Climate Technologies","volume":"45 1","pages":"137 - 149"},"PeriodicalIF":1.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental and Climate Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/rtuect-2023-0011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract As the volume of textile waste steadily increases, mechanical, chemical and biological technologies for textile waste recovery are evolving. Also, the legal framework of the European Union has stated the commitments for promoting the recycling of textile waste in the Member States. So far, however, no decision-making algorithms have been developed for the selection of products recovered from textile waste. Within the present study, a hybrid multi-criteria decision-making algorithm for evaluating textile waste recovered products has been developed applying seven circular economic criteria – ‘Circular economy approach of the technology’, ‘Added-value potential of final product’, ‘Share of textile waste in total waste feedstock’, ‘Diversity of textile mix suitable for specific technology’, ‘Pre-treatment of waste feedstock’, ‘Recovery potential’ and ‘Maturity of a recovery technology’. The weighting of the criteria was determined by eight waste management experts. The results of the expert-based criteria evaluation show that the most important criteria are ‘Added-value potential of final product’ and ‘Circular economy approach of the technology’. The developed decision-making methodology has been adapted to nine textile waste recovered products – compost, refuse-derived fuel, ethanol, glucose, building insulation material from cement and textile waste mix, building insulation material from denim textile waste, terephthalic acid, recovered cotton and recovered polyester. The multi-criteria, decision-making ranking of the products textile shows that the highest potential for products recovered from textile waste is for glucose and terephthalic acid, while the lowest – for ethanol, compost and refuse-derived fuel.
废物回收方案的决策算法。纺织废弃物衍生产品综述
随着纺织废料的不断增加,纺织废料的机械、化学和生物回收技术也在不断发展。此外,欧洲联盟的法律框架规定了在成员国促进纺织废料回收的承诺。然而,到目前为止,还没有开发出决策算法来选择从纺织废料中回收的产品。在本研究中,开发了一种用于评估纺织废物回收产品的混合多标准决策算法,应用七个循环经济标准-“技术的循环经济方法”,“最终产品的附加值潜力”,“纺织废物在总废原料中的份额”,“适合特定技术的纺织混合物的多样性”,“废原料的预处理”,“回收潜力”和“回收技术的成熟度”。标准的权重由8位废物管理专家确定。基于专家的标准评价结果表明,“最终产品的附加值潜力”和“技术的循环经济途径”是最重要的标准。开发的决策方法已适用于九种纺织废物回收产品-堆肥,垃圾衍生燃料,乙醇,葡萄糖,水泥和纺织废物混合物中的建筑绝缘材料,牛仔布纺织废物中的建筑绝缘材料,对苯二甲酸,回收棉花和回收聚酯。纺织品产品的多标准决策排序表明,从纺织废料中回收的产品潜力最高的是葡萄糖和对苯二甲酸,而最低的是乙醇、堆肥和垃圾衍生燃料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental and Climate Technologies
Environmental and Climate Technologies GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY-
CiteScore
3.10
自引率
28.60%
发文量
0
审稿时长
16 weeks
期刊介绍: Environmental and Climate Technologies provides a forum for information on innovation, research and development in the areas of environmental science, energy resources and processes, innovative technologies and energy efficiency. Authors are encouraged to submit manuscripts which cover the range from bioeconomy, sustainable technology development, life cycle analysis, eco-design, climate change mitigation, innovative solutions for pollution reduction to resilience, the energy efficiency of buildings, secure and sustainable energy supplies. The Journal ensures international publicity for original research and innovative work. A variety of themes are covered through a multi-disciplinary approach, one which integrates all aspects of environmental science: -Sustainability of technology development- Bioeconomy- Cleaner production, end of pipe production- Zero emission technologies- Eco-design- Life cycle analysis- Eco-efficiency- Environmental impact assessment- Environmental management systems- Resilience- Energy and carbon markets- Greenhouse gas emission reduction and climate technologies- Methodologies for the evaluation of sustainability- Renewable energy resources- Solar, wind, geothermal, hydro energy, biomass sources: algae, wood, straw, biogas, energetic plants and organic waste- Waste management- Quality of outdoor and indoor environment- Environmental monitoring and evaluation- Heat and power generation, including district heating and/or cooling- Energy efficiency.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信