Thermal protective ability of electrochemically deposited nickel and nickel – boron coatings

S. Perevoznikov, Ekaterina V. Makovskaya, L. Tsybulskaya, V. Shendyukov
{"title":"Thermal protective ability of electrochemically deposited nickel and nickel – boron coatings","authors":"S. Perevoznikov, Ekaterina V. Makovskaya, L. Tsybulskaya, V. Shendyukov","doi":"10.33581/2520-257x-2022-2-52-63","DOIUrl":null,"url":null,"abstract":"The thermal protective ability of electrochemically deposited Ni and Ni – B coatings was investigated with the aim of their potential application in the production of lamella-type under-die coolers. It has been established that all studied nickelbased coatings retain thermal stability when heated in an air atmosphere in the temperature range from 500 to 700 °C. At a higher annealing temperature (800 °C), the coatings are oxidised (to the greatest extent the nickel coating) with the formation of an oxide layer up to 7–8 μm thick, the main product of oxidation is Ni0.8Cu0.2O. It is shown that the Ni – B coating with a boron content of 4.5 at. % exhibits the highest thermal stability due to the formation of a film of nickel borate (Ni3(BO3)2) on its surface during annealing. A thin continuous film of borate prevents the contact of atmospheric oxygen with the surface and, accordingly, the formation of mixed oxides of copper and nickel, which are a consequence of the thermal instability of nickel coatings during annealing.","PeriodicalId":17303,"journal":{"name":"Journal of the Belarusian State University. Chemistry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Belarusian State University. Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33581/2520-257x-2022-2-52-63","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The thermal protective ability of electrochemically deposited Ni and Ni – B coatings was investigated with the aim of their potential application in the production of lamella-type under-die coolers. It has been established that all studied nickelbased coatings retain thermal stability when heated in an air atmosphere in the temperature range from 500 to 700 °C. At a higher annealing temperature (800 °C), the coatings are oxidised (to the greatest extent the nickel coating) with the formation of an oxide layer up to 7–8 μm thick, the main product of oxidation is Ni0.8Cu0.2O. It is shown that the Ni – B coating with a boron content of 4.5 at. % exhibits the highest thermal stability due to the formation of a film of nickel borate (Ni3(BO3)2) on its surface during annealing. A thin continuous film of borate prevents the contact of atmospheric oxygen with the surface and, accordingly, the formation of mixed oxides of copper and nickel, which are a consequence of the thermal instability of nickel coatings during annealing.
电化学镀镍和镍硼涂层的热防护性能
研究了电化学沉积Ni和Ni - B涂层的热防护性能,探讨了其在片状模具下冷却器生产中的应用前景。所有研究的镍基涂层在500 ~ 700℃的空气环境中加热时都保持热稳定性。在较高的退火温度(800℃)下,镀层发生氧化(最大程度上为镍镀层),形成7 ~ 8 μm厚的氧化层,氧化的主要产物为ni0.8 cu0.2 2o。结果表明,Ni - B涂层的硼含量为4.5 at。由于在退火过程中表面形成了一层硼酸镍(Ni3(BO3)2)膜,因此表现出最高的热稳定性。薄而连续的硼酸盐膜防止大气中的氧气与表面接触,因此,铜和镍的混合氧化物的形成,这是镍涂层在退火过程中的热不稳定性的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信