Anthony G Vaccaro, Panthea Heydari, Leonardo Christov-Moore, Antonio Damasio, Jonas T Kaplan
{"title":"Perspective-taking is associated with increased discriminability of affective states in the ventromedial prefrontal cortex.","authors":"Anthony G Vaccaro, Panthea Heydari, Leonardo Christov-Moore, Antonio Damasio, Jonas T Kaplan","doi":"10.1093/scan/nsac035","DOIUrl":null,"url":null,"abstract":"<p><p>Recent work using multivariate-pattern analysis (MVPA) on functional magnetic resonance imaging (fMRI) data has found that distinct affective states produce correspondingly distinct patterns of neural activity in the cerebral cortex. However, it is unclear whether individual differences in the distinctiveness of neural patterns evoked by affective stimuli underlie empathic abilities such as perspective-taking (PT). Accordingly, we examined whether we could predict PT tendency from the classification of blood-oxygen-level-dependent (BOLD) fMRI activation patterns while participants (n = 57) imagined themselves in affectively charged scenarios. We used an MVPA searchlight analysis to map where in the brain activity patterns permitted the classification of four affective states: happiness, sadness, fear and disgust. Classification accuracy was significantly above chance levels in most of the prefrontal cortex and in the posterior medial cortices. Furthermore, participants' self-reported PT was positively associated with classification accuracy in the ventromedial prefrontal cortex and insula. This finding has implications for understanding affective processing in the prefrontal cortex and for interpreting the cognitive significance of classifiable affective brain states. Our multivariate approach suggests that PT ability may rely on the grain of internally simulated affective representations rather than simply the global strength.</p>","PeriodicalId":21789,"journal":{"name":"Social cognitive and affective neuroscience","volume":"17 12","pages":"1082-1090"},"PeriodicalIF":3.9000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9714424/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Social cognitive and affective neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/scan/nsac035","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Recent work using multivariate-pattern analysis (MVPA) on functional magnetic resonance imaging (fMRI) data has found that distinct affective states produce correspondingly distinct patterns of neural activity in the cerebral cortex. However, it is unclear whether individual differences in the distinctiveness of neural patterns evoked by affective stimuli underlie empathic abilities such as perspective-taking (PT). Accordingly, we examined whether we could predict PT tendency from the classification of blood-oxygen-level-dependent (BOLD) fMRI activation patterns while participants (n = 57) imagined themselves in affectively charged scenarios. We used an MVPA searchlight analysis to map where in the brain activity patterns permitted the classification of four affective states: happiness, sadness, fear and disgust. Classification accuracy was significantly above chance levels in most of the prefrontal cortex and in the posterior medial cortices. Furthermore, participants' self-reported PT was positively associated with classification accuracy in the ventromedial prefrontal cortex and insula. This finding has implications for understanding affective processing in the prefrontal cortex and for interpreting the cognitive significance of classifiable affective brain states. Our multivariate approach suggests that PT ability may rely on the grain of internally simulated affective representations rather than simply the global strength.
期刊介绍:
SCAN will consider research that uses neuroimaging (fMRI, MRI, PET, EEG, MEG), neuropsychological patient studies, animal lesion studies, single-cell recording, pharmacological perturbation, and transcranial magnetic stimulation. SCAN will also consider submissions that examine the mediational role of neural processes in linking social phenomena to physiological, neuroendocrine, immunological, developmental, and genetic processes. Additionally, SCAN will publish papers that address issues of mental and physical health as they relate to social and affective processes (e.g., autism, anxiety disorders, depression, stress, effects of child rearing) as long as cognitive neuroscience methods are used.