A robust algebraic method for human face recognition

Q4 Computer Science
Yong-Qing Cheng, Ke Liu, Jingyu Yang, Hua-Feng Wang
{"title":"A robust algebraic method for human face recognition","authors":"Yong-Qing Cheng, Ke Liu, Jingyu Yang, Hua-Feng Wang","doi":"10.1109/ICPR.1992.201759","DOIUrl":null,"url":null,"abstract":"The feature image and projective image are first proposed to describe the human face, and a new method for human face recognition in which projective images are used for classification is presented. The projective coordinates of projective image on feature images are used as the feature vectors which represent the inherent attributes of human faces. Finally, the feature extraction method of human face images is derived and a hierarchical distance classifier for human face recognition is constructed. The experiments have shown that the recognition method based on the coordinate feature vector is a powerful method for recognizing human face images, and recognition accuracies of 100 percent are obtained for all 64 facial images in eight classes of human faces.<<ETX>>","PeriodicalId":34917,"journal":{"name":"模式识别与人工智能","volume":"33 1","pages":"221-224"},"PeriodicalIF":0.0000,"publicationDate":"1992-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"模式识别与人工智能","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.1109/ICPR.1992.201759","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 41

Abstract

The feature image and projective image are first proposed to describe the human face, and a new method for human face recognition in which projective images are used for classification is presented. The projective coordinates of projective image on feature images are used as the feature vectors which represent the inherent attributes of human faces. Finally, the feature extraction method of human face images is derived and a hierarchical distance classifier for human face recognition is constructed. The experiments have shown that the recognition method based on the coordinate feature vector is a powerful method for recognizing human face images, and recognition accuracies of 100 percent are obtained for all 64 facial images in eight classes of human faces.<>
人脸识别的鲁棒代数方法
首次提出了用特征图像和投影图像来描述人脸,提出了一种利用投影图像进行分类的人脸识别新方法。利用射影图像在特征图像上的射影坐标作为特征向量,表示人脸的固有属性。最后,推导了人脸图像的特征提取方法,构建了用于人脸识别的层次距离分类器。实验表明,基于坐标特征向量的人脸识别方法是一种有效的人脸识别方法,对8类64张人脸图像的识别准确率均达到100%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
模式识别与人工智能
模式识别与人工智能 Computer Science-Artificial Intelligence
CiteScore
1.60
自引率
0.00%
发文量
3316
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信