1.74-µW/ch, 95.3%-accurate spike-sorting hardware based on Bayesian decision

Zhewei Jiang, J. P. Cerqueira, Seongjong Kim, Qi Wang, Mingoo Seok
{"title":"1.74-µW/ch, 95.3%-accurate spike-sorting hardware based on Bayesian decision","authors":"Zhewei Jiang, J. P. Cerqueira, Seongjong Kim, Qi Wang, Mingoo Seok","doi":"10.1109/VLSIC.2016.7573468","DOIUrl":null,"url":null,"abstract":"This paper presents algorithm/hardware co-design for real-time unsupervised spike sorting hardware for reducing power and improving sorting accuracy. We devise an algorithm based on Bayesian decision, which enables high accuracy while using noisy and simple time-domain features. Those simple features significantly reduce computation complexity, memory requirement, and thus the required number of cycles per sorting. The latter, coupled with the sparsity of spikes in time, makes the hardware idle for most of time, and thus we employ aggressive power gating and balloon latches to sleep most of the circuits and wake them up only when a spike is detected for maximal power savings. The hardware prototyped in a 65nm achieves higher accuracy at lower power than the existing arts.","PeriodicalId":6512,"journal":{"name":"2016 IEEE Symposium on VLSI Circuits (VLSI-Circuits)","volume":"23 1","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Symposium on VLSI Circuits (VLSI-Circuits)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSIC.2016.7573468","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

This paper presents algorithm/hardware co-design for real-time unsupervised spike sorting hardware for reducing power and improving sorting accuracy. We devise an algorithm based on Bayesian decision, which enables high accuracy while using noisy and simple time-domain features. Those simple features significantly reduce computation complexity, memory requirement, and thus the required number of cycles per sorting. The latter, coupled with the sparsity of spikes in time, makes the hardware idle for most of time, and thus we employ aggressive power gating and balloon latches to sleep most of the circuits and wake them up only when a spike is detected for maximal power savings. The hardware prototyped in a 65nm achieves higher accuracy at lower power than the existing arts.
1.74-µW/ch, 95.3%准确率的基于贝叶斯决策的尖峰排序硬件
本文提出了一种算法/硬件协同设计的实时无监督尖峰分拣硬件,以降低功耗和提高分拣精度。我们设计了一种基于贝叶斯决策的算法,该算法可以在使用噪声和简单的时域特征的情况下实现高精度。这些简单的特性显著降低了计算复杂度、内存需求以及每次排序所需的周期数。后者,再加上时间尖峰的稀疏性,使得硬件在大部分时间处于空闲状态,因此我们采用积极的功率门控和气球锁存器来休眠大多数电路,只有在检测到尖峰时才唤醒它们,以最大限度地节省功耗。采用65nm工艺的硬件原型在较低功耗下实现了比现有工艺更高的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信