Predicting the Sequence-Dependent Backbone Dynamics of Intrinsically Disordered Proteins.

Sanbo Qin, Huan-Xiang Zhou
{"title":"Predicting the Sequence-Dependent Backbone Dynamics of Intrinsically Disordered Proteins.","authors":"Sanbo Qin, Huan-Xiang Zhou","doi":"10.1101/2023.02.02.526886","DOIUrl":null,"url":null,"abstract":"<p><p>How the sequences of intrinsically disordered proteins (IDPs) code for functions is still an enigma. Dynamics, in particular residue-specific dynamics, holds crucial clues. Enormous efforts have been spent to characterize residue-specific dynamics of IDPs, mainly through NMR spin relaxation experiments. Here we present a sequence-based method, SeqDYN, for predicting residue-specific backbone dynamics of IDPs. SeqDYN employs a mathematical model with 21 parameters: one is a correlation length and 20 are the contributions of the amino acids to slow dynamics. Training on a set of 45 IDPs reveals aromatic, Arg, and long-branched aliphatic amino acids as the most active in slow dynamics whereas Gly and short polar amino acids as the least active. SeqDYN predictions not only provide an accurate and insightful characterization of sequence-dependent IDP dynamics but may also serve as indicators in a host of biophysical processes, including the propensities of IDP sequences to undergo phase separation.</p>","PeriodicalId":72407,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/9f/1f/nihpp-2023.02.02.526886v1.PMC9915584.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2023.02.02.526886","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

How the sequences of intrinsically disordered proteins (IDPs) code for functions is still an enigma. Dynamics, in particular residue-specific dynamics, holds crucial clues. Enormous efforts have been spent to characterize residue-specific dynamics of IDPs, mainly through NMR spin relaxation experiments. Here we present a sequence-based method, SeqDYN, for predicting residue-specific backbone dynamics of IDPs. SeqDYN employs a mathematical model with 21 parameters: one is a correlation length and 20 are the contributions of the amino acids to slow dynamics. Training on a set of 45 IDPs reveals aromatic, Arg, and long-branched aliphatic amino acids as the most active in slow dynamics whereas Gly and short polar amino acids as the least active. SeqDYN predictions not only provide an accurate and insightful characterization of sequence-dependent IDP dynamics but may also serve as indicators in a host of biophysical processes, including the propensities of IDP sequences to undergo phase separation.

Abstract Image

Abstract Image

Abstract Image

预测本质无序蛋白质的序列依赖性主链动力学。
动力学是内在无序蛋白质(IDP)序列和功能之间的关键联系。核磁共振自旋弛豫是表征IDP序列相关骨架动力学的一种强大技术。特别令人感兴趣的是15N横向弛豫率(R2),它报告了较慢的动力学(10s至1μs及以上)。NMR和分子动力学(MD)模拟表明,局部相互作用和二级结构的形成减缓了主链动力学并提高了R2。R2升高被认为是膜缔合、液-液相分离和其他功能过程的倾向性的指标。在这里,我们提出了一种基于序列的方法,SeqDYN,用于预测IDPs的R2。残基的R2值表示为所有残基的促成因子的乘积,这些促成因子随着与中心残基的序列距离的增加而减弱。该数学模型有21个参数,表示20种氨基酸的相关长度(其中衰减为50%)和贡献因子的幅度。对一组45个IDP的训练揭示了5.6个残基的相关长度,芳香族和长支链脂族氨基酸和Arg作为R2启动子,而Gly和短极性氨基酸作为R2抑制剂。SeqDYN的预测精度与最近使用IDP特定力场的MD模拟相比具有竞争力。对于结构化蛋白质,SeqDYN预测表示R2处于未折叠状态。SeqDYN可作为web服务器在https://zhougroup-uic.github.io/SeqDYNidp/用于快速R2预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信