In-Network Approximate and Efficient Spatiotemporal Range Queries on Moving Objects

Guang Yang, Liang Liang
{"title":"In-Network Approximate and Efficient Spatiotemporal Range Queries on Moving Objects","authors":"Guang Yang, Liang Liang","doi":"10.48786/edbt.2024.04","DOIUrl":null,"url":null,"abstract":"Data aggregations enable privacy-aware data analytics for moving objects. A spatiotemporal range count query is a fundamental query that aggregates the count of objects in a given spatial region and a time interval. Existing works are designed for centralized systems, which lead to issues with extensive communication and the potential for data leaks. Current in-network systems suffer from the distinct count problem (counting the same objects multiple times) and the dead space problem (excessive intra-communication from ill-suited spatial subdivisions). We propose a novel framework based on a planar graph representation for efficient privacy-aware in-network aggregate queries. Unlike conventional spatial decomposition methods, our framework uses sensor placement techniques to select sensors to reduce dead space. A submodular maximization-based method is introduced when the query distribution is known and a host of sampling methods are used when the query distribution is unknown or dynamic. We avoid double counting by tracking movements along the graph edges using discrete differential forms. We support queries with arbitrary temporal intervals with a constant-sized regression model that accelerates the query performance and reduces the storage size. We evaluate our method on real-world mobility data, which yields us a relative error of at most 13 . 8% with 25 . 6% of sensors while achieving a speedup of 3 . 5 × , 69 . 81% reduction in sensors accessed, and a storage reduction of 99 . 96% compared to finding the exact count.","PeriodicalId":88813,"journal":{"name":"Advances in database technology : proceedings. International Conference on Extending Database Technology","volume":"2 1","pages":"34-46"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in database technology : proceedings. International Conference on Extending Database Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48786/edbt.2024.04","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Data aggregations enable privacy-aware data analytics for moving objects. A spatiotemporal range count query is a fundamental query that aggregates the count of objects in a given spatial region and a time interval. Existing works are designed for centralized systems, which lead to issues with extensive communication and the potential for data leaks. Current in-network systems suffer from the distinct count problem (counting the same objects multiple times) and the dead space problem (excessive intra-communication from ill-suited spatial subdivisions). We propose a novel framework based on a planar graph representation for efficient privacy-aware in-network aggregate queries. Unlike conventional spatial decomposition methods, our framework uses sensor placement techniques to select sensors to reduce dead space. A submodular maximization-based method is introduced when the query distribution is known and a host of sampling methods are used when the query distribution is unknown or dynamic. We avoid double counting by tracking movements along the graph edges using discrete differential forms. We support queries with arbitrary temporal intervals with a constant-sized regression model that accelerates the query performance and reduces the storage size. We evaluate our method on real-world mobility data, which yields us a relative error of at most 13 . 8% with 25 . 6% of sensors while achieving a speedup of 3 . 5 × , 69 . 81% reduction in sensors accessed, and a storage reduction of 99 . 96% compared to finding the exact count.
运动对象的网络近似和高效时空距离查询
数据聚合支持对移动对象进行隐私感知的数据分析。时空范围计数查询是聚合给定空间区域和时间间隔内对象计数的基本查询。现有的工作是为集中式系统设计的,这导致了广泛的通信和潜在的数据泄露问题。当前的网络内系统存在明显计数问题(对相同对象进行多次计数)和死空间问题(由于不合适的空间细分而导致的过度内部通信)。我们提出了一种基于平面图表示的网络聚合查询框架。与传统的空间分解方法不同,我们的框架使用传感器放置技术来选择传感器以减少死区。当查询分布已知时,引入基于子模块最大化的方法;当查询分布未知或动态时,使用大量抽样方法。我们通过使用离散微分形式跟踪沿图边的运动来避免重复计数。我们支持具有任意时间间隔的查询,使用恒定大小的回归模型可以加速查询性能并减少存储大小。我们在真实世界的移动数据上评估了我们的方法,这使我们的相对误差最多为13。8%的人选择25。6%的传感器,同时实现3的加速。5 ×, 69。访问的传感器减少81%,存储减少99%。96%与找到准确的数字相比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信