{"title":"Fast expansion into harmonics on the disk: a steerable basis with fast radial convolutions","authors":"Nicholas F. Marshall, Oscar Mickelin, A. Singer","doi":"10.48550/arXiv.2207.13674","DOIUrl":null,"url":null,"abstract":"We present a fast and numerically accurate method for expanding digitized $L \\times L$ images representing functions on $[-1,1]^2$ supported on the disk $\\{x \\in \\mathbb{R}^2 : |x|<1\\}$ in the harmonics (Dirichlet Laplacian eigenfunctions) on the disk. Our method, which we refer to as the Fast Disk Harmonics Transform (FDHT), runs in $O(L^2 \\log L)$ operations. This basis is also known as the Fourier-Bessel basis, and it has several computational advantages: it is orthogonal, ordered by frequency, and steerable in the sense that images expanded in the basis can be rotated by applying a diagonal transform to the coefficients. Moreover, we show that convolution with radial functions can also be efficiently computed by applying a diagonal transform to the coefficients.","PeriodicalId":21812,"journal":{"name":"SIAM J. Sci. Comput.","volume":"1 1","pages":"2431-"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM J. Sci. Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2207.13674","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
We present a fast and numerically accurate method for expanding digitized $L \times L$ images representing functions on $[-1,1]^2$ supported on the disk $\{x \in \mathbb{R}^2 : |x|<1\}$ in the harmonics (Dirichlet Laplacian eigenfunctions) on the disk. Our method, which we refer to as the Fast Disk Harmonics Transform (FDHT), runs in $O(L^2 \log L)$ operations. This basis is also known as the Fourier-Bessel basis, and it has several computational advantages: it is orthogonal, ordered by frequency, and steerable in the sense that images expanded in the basis can be rotated by applying a diagonal transform to the coefficients. Moreover, we show that convolution with radial functions can also be efficiently computed by applying a diagonal transform to the coefficients.