Improved Object Re-Identification via More Efficient Embeddings

Ertugrul Bayraktar
{"title":"Improved Object Re-Identification via More Efficient Embeddings","authors":"Ertugrul Bayraktar","doi":"10.55730/1300-0632.3984","DOIUrl":null,"url":null,"abstract":": Object reidentification (ReID) in cluttered rigid scenes is a challenging problem especially when same-looking objects coexist in the scene. ReID is accepted to be one of the most powerful tools for matching the correct identities to each individual object when issues such as occlusion, missed detections, multiple same-looking objects coexisting in the same scene, and disappearance of objects from the view and/or revisiting the same region arise. We propose a novel framework towards more efficient object ReID, improved object reidentification (IO-ReID), to perform object ReID in challenging scenes with real-time processing in mind. The proposed approach achieves distinctive and efficient object embedding via training with the triplet loss, with input from both the foreground/background split by bounding box, and the full input image. With extensive experiments on two datasets serving for Object ReID, we demonstrate that the proposed method, IO-ReID, obtains a higher ReID accuracy and runs faster compared to the state-of-the-art methods on object ReID.","PeriodicalId":23352,"journal":{"name":"Turkish J. Electr. Eng. Comput. Sci.","volume":"1 1","pages":"282-294"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Turkish J. Electr. Eng. Comput. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55730/1300-0632.3984","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

: Object reidentification (ReID) in cluttered rigid scenes is a challenging problem especially when same-looking objects coexist in the scene. ReID is accepted to be one of the most powerful tools for matching the correct identities to each individual object when issues such as occlusion, missed detections, multiple same-looking objects coexisting in the same scene, and disappearance of objects from the view and/or revisiting the same region arise. We propose a novel framework towards more efficient object ReID, improved object reidentification (IO-ReID), to perform object ReID in challenging scenes with real-time processing in mind. The proposed approach achieves distinctive and efficient object embedding via training with the triplet loss, with input from both the foreground/background split by bounding box, and the full input image. With extensive experiments on two datasets serving for Object ReID, we demonstrate that the proposed method, IO-ReID, obtains a higher ReID accuracy and runs faster compared to the state-of-the-art methods on object ReID.
通过更有效的嵌入改进了对象的重新识别
物体再识别(ReID)在杂乱的刚性场景中是一个具有挑战性的问题,特别是当相同的物体在场景中共存时。ReID被认为是最强大的工具之一,当出现遮挡、错过检测、多个相同外观的物体共存于同一场景、物体从视图中消失和/或重新访问同一区域等问题时,可以将正确的身份匹配到每个单独的物体。我们提出了一个新的框架,以实现更有效的目标ReID,改进的目标再识别(IO-ReID),在具有挑战性的场景中执行目标ReID,并考虑到实时处理。该方法通过使用三元组损失训练,同时使用边界框分割的前景/背景和完整的输入图像,实现了独特而高效的目标嵌入。通过在两个用于对象ReID的数据集上进行大量实验,我们证明了所提出的IO-ReID方法与目前最先进的对象ReID方法相比,获得了更高的ReID精度和更快的运行速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信