Glocal map-matching algorithm for high-frequency and large-scale GPS data

IF 2.8 3区 工程技术 Q3 TRANSPORTATION
Yuanfang Zhu , Meilan Jiang , Toshiyuki Yamamoto
{"title":"Glocal map-matching algorithm for high-frequency and large-scale GPS data","authors":"Yuanfang Zhu ,&nbsp;Meilan Jiang ,&nbsp;Toshiyuki Yamamoto","doi":"10.1080/15472450.2022.2086805","DOIUrl":null,"url":null,"abstract":"<div><p>The global positioning system (GPS) trajectory data are extensively utilized in various fields, such as driving behavior analysis, vehicle navigation systems, and traffic management. GPS sensors installed in numerous driving recorders and smartphones facilitate data collection on a large-scale in a high-frequency manner. Therefore, map-matching algorithms are indispensable to identify the GPS trajectories on a road network. Although the local map-matching algorithm reduces computation time, it lacks sufficient accuracy. Conversely, the global map-matching algorithm enhances matching accuracy; however, the computations are time consuming in the case of large-scale data. Therefore, this study proposes a method to improve the accuracy of the local map-matching algorithm without affecting its efficiency. The proposed method first executes the incremental map-matching algorithm. It then identifies the mismatching links in the results based on the connectivity of the links. Finally, the shortest path algorithm and the longest common subsequence are used to correct these error links. An elderly driver’s driving recorder data were used to conduct the experiment to compare the proposed method with four state-of-the-art map-matching algorithms in terms of accuracy and efficiency. The experimental results indicate that the proposed method can significantly increase the accuracy and efficiency of the map-matching process when considering high-frequency and large-scale data. Particularly, compared with the two-benchmark global map-matching algorithms, the proposed method can reduce the error rate of map-matching by nearly half, only consuming 18% and 58% of the computation time of the two global algorithms, respectively.</p></div>","PeriodicalId":54792,"journal":{"name":"Journal of Intelligent Transportation Systems","volume":"28 1","pages":"Pages 1-15"},"PeriodicalIF":2.8000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Transportation Systems","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1547245022004388","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TRANSPORTATION","Score":null,"Total":0}
引用次数: 3

Abstract

The global positioning system (GPS) trajectory data are extensively utilized in various fields, such as driving behavior analysis, vehicle navigation systems, and traffic management. GPS sensors installed in numerous driving recorders and smartphones facilitate data collection on a large-scale in a high-frequency manner. Therefore, map-matching algorithms are indispensable to identify the GPS trajectories on a road network. Although the local map-matching algorithm reduces computation time, it lacks sufficient accuracy. Conversely, the global map-matching algorithm enhances matching accuracy; however, the computations are time consuming in the case of large-scale data. Therefore, this study proposes a method to improve the accuracy of the local map-matching algorithm without affecting its efficiency. The proposed method first executes the incremental map-matching algorithm. It then identifies the mismatching links in the results based on the connectivity of the links. Finally, the shortest path algorithm and the longest common subsequence are used to correct these error links. An elderly driver’s driving recorder data were used to conduct the experiment to compare the proposed method with four state-of-the-art map-matching algorithms in terms of accuracy and efficiency. The experimental results indicate that the proposed method can significantly increase the accuracy and efficiency of the map-matching process when considering high-frequency and large-scale data. Particularly, compared with the two-benchmark global map-matching algorithms, the proposed method can reduce the error rate of map-matching by nearly half, only consuming 18% and 58% of the computation time of the two global algorithms, respectively.

高频和大规模 GPS 数据的局部地图匹配算法
全球定位系统(GPS)轨迹数据被广泛应用于驾驶行为分析、车辆导航系统和交通管理等多个领域。安装在众多行车记录仪和智能手机中的 GPS 传感器有助于大规模、高频率地收集数据。因此,地图匹配算法对于识别道路网络中的 GPS 轨迹是不可或缺的。局部地图匹配算法虽然可以减少计算时间,但缺乏足够的准确性。相反,全局地图匹配算法提高了匹配精度,但在大规模数据的情况下计算耗时。因此,本研究提出了一种在不影响局部地图匹配算法效率的前提下提高其精确度的方法。建议的方法首先执行增量地图匹配算法。然后,根据链接的连通性识别结果中不匹配的链接。最后,使用最短路径算法和最长公共子序列来纠正这些错误链接。实验使用了一位老年司机的行车记录仪数据,从准确性和效率方面比较了所提出的方法和四种最先进的地图匹配算法。实验结果表明,在考虑高频和大规模数据时,所提出的方法能显著提高地图匹配过程的准确性和效率。特别是,与两种基准全局地图匹配算法相比,本文提出的方法能将地图匹配的错误率降低近一半,计算时间分别仅为两种全局算法的 18% 和 58%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.80
自引率
19.40%
发文量
51
审稿时长
15 months
期刊介绍: The Journal of Intelligent Transportation Systems is devoted to scholarly research on the development, planning, management, operation and evaluation of intelligent transportation systems. Intelligent transportation systems are innovative solutions that address contemporary transportation problems. They are characterized by information, dynamic feedback and automation that allow people and goods to move efficiently. They encompass the full scope of information technologies used in transportation, including control, computation and communication, as well as the algorithms, databases, models and human interfaces. The emergence of these technologies as a new pathway for transportation is relatively new. The Journal of Intelligent Transportation Systems is especially interested in research that leads to improved planning and operation of the transportation system through the application of new technologies. The journal is particularly interested in research that adds to the scientific understanding of the impacts that intelligent transportation systems can have on accessibility, congestion, pollution, safety, security, noise, and energy and resource consumption. The journal is inter-disciplinary, and accepts work from fields of engineering, economics, planning, policy, business and management, as well as any other disciplines that contribute to the scientific understanding of intelligent transportation systems. The journal is also multi-modal, and accepts work on intelligent transportation for all forms of ground, air and water transportation. Example topics include the role of information systems in transportation, traffic flow and control, vehicle control, routing and scheduling, traveler response to dynamic information, planning for ITS innovations, evaluations of ITS field operational tests, ITS deployment experiences, automated highway systems, vehicle control systems, diffusion of ITS, and tools/software for analysis of ITS.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信