Kehui Yao, Jun Zhu, Daniel J. O'Brien, Daniel Walsh
{"title":"Bayesian spatio-temporal survival analysis for all types of censoring with application to a wildlife disease study","authors":"Kehui Yao, Jun Zhu, Daniel J. O'Brien, Daniel Walsh","doi":"10.1002/env.2823","DOIUrl":null,"url":null,"abstract":"<p>In this article, we consider modeling arbitrarily censored survival data with spatio-temporal covariates. We demonstrate that under the piecewise constant hazard function, the likelihood for uncensored or right-censored subjects is proportional to the likelihood of multiple conditionally independent Poisson random variables. To address left- or interval-censored subjects, we propose to impute the exact event times and convert them into uncensored subjects, enabling the application of the integrated nested Laplace approximation to update model parameters using the imputed data. We introduce an iterative algorithm that alternates between imputing event times for left- and interval-censored subjects and re-estimating model parameters. The proposed method is assessed through a simulation study and applied to analyze a spatio-temporal survival dataset in a wildlife disease study investigating bovine tuberculosis in white-tailed deer in Michigan.</p>","PeriodicalId":50512,"journal":{"name":"Environmetrics","volume":"34 8","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/env.2823","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmetrics","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/env.2823","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
In this article, we consider modeling arbitrarily censored survival data with spatio-temporal covariates. We demonstrate that under the piecewise constant hazard function, the likelihood for uncensored or right-censored subjects is proportional to the likelihood of multiple conditionally independent Poisson random variables. To address left- or interval-censored subjects, we propose to impute the exact event times and convert them into uncensored subjects, enabling the application of the integrated nested Laplace approximation to update model parameters using the imputed data. We introduce an iterative algorithm that alternates between imputing event times for left- and interval-censored subjects and re-estimating model parameters. The proposed method is assessed through a simulation study and applied to analyze a spatio-temporal survival dataset in a wildlife disease study investigating bovine tuberculosis in white-tailed deer in Michigan.
期刊介绍:
Environmetrics, the official journal of The International Environmetrics Society (TIES), an Association of the International Statistical Institute, is devoted to the dissemination of high-quality quantitative research in the environmental sciences.
The journal welcomes pertinent and innovative submissions from quantitative disciplines developing new statistical and mathematical techniques, methods, and theories that solve modern environmental problems. Articles must proffer substantive, new statistical or mathematical advances to answer important scientific questions in the environmental sciences, or must develop novel or enhanced statistical methodology with clear applications to environmental science. New methods should be illustrated with recent environmental data.