Statistical Inference Framework for Source Detection of Contagion Processes on Arbitrary Network Structures

Nino Antulov-Fantulin, Alen Lancic, H. Štefančić, M. Šikić, T. Šmuc
{"title":"Statistical Inference Framework for Source Detection of Contagion Processes on Arbitrary Network Structures","authors":"Nino Antulov-Fantulin, Alen Lancic, H. Štefančić, M. Šikić, T. Šmuc","doi":"10.1109/SASOW.2014.35","DOIUrl":null,"url":null,"abstract":"We introduce a statistical inference framework for maximum likelihood estimation of the contagion source from a partially observed contagion spreading process on an arbitrary network structure. The framework is based on simulations of a contagion spreading process from a set of potential sources which were infected in the observed realization. We present a number of different likelihood estimators for determining the conditional probabilities of potential initial sources producing the observed epidemic realization, which are computed in scalable and parallel way. This statistical inference framework is applicable to arbitrary networks with different dynamical spreading processes.","PeriodicalId":6458,"journal":{"name":"2014 IEEE Eighth International Conference on Self-Adaptive and Self-Organizing Systems Workshops","volume":"29 1","pages":"78-83"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Eighth International Conference on Self-Adaptive and Self-Organizing Systems Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SASOW.2014.35","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

Abstract

We introduce a statistical inference framework for maximum likelihood estimation of the contagion source from a partially observed contagion spreading process on an arbitrary network structure. The framework is based on simulations of a contagion spreading process from a set of potential sources which were infected in the observed realization. We present a number of different likelihood estimators for determining the conditional probabilities of potential initial sources producing the observed epidemic realization, which are computed in scalable and parallel way. This statistical inference framework is applicable to arbitrary networks with different dynamical spreading processes.
任意网络结构传染过程源检测的统计推理框架
我们引入了一个统计推理框架,用于从任意网络结构上部分观察到的传染传播过程估计传染源的最大似然。该框架基于在观察到的实现中被感染的一组潜在源的传染传播过程的模拟。我们提出了一些不同的似然估计,用于确定产生观测到的流行病实现的潜在初始源的条件概率,这些估计以可扩展和并行的方式计算。该统计推理框架适用于具有不同动态扩展过程的任意网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信