Identifying music-induced emotions from EEG for use in brain-computer music interfacing

I. Daly, Asad Malik, James Weaver, F. Hwang, S. Nasuto, Duncan A. H. Williams, Alexis Kirke, E. Miranda
{"title":"Identifying music-induced emotions from EEG for use in brain-computer music interfacing","authors":"I. Daly, Asad Malik, James Weaver, F. Hwang, S. Nasuto, Duncan A. H. Williams, Alexis Kirke, E. Miranda","doi":"10.1109/ACII.2015.7344685","DOIUrl":null,"url":null,"abstract":"Brain-computer music interfaces (BCMI) provide a method to modulate an individuals affective state via the selection or generation of music according to their current affective state. Potential applications of such systems may include entertainment of therapeutic applications. We outline a proposed design for such a BCMI and seek a method for automatically differentiating different music induced affective states. Band-power features are explored for use in automatically identifying music-induced affective states. Additionally, a linear discriminant analysis classifier and a support vector machine are evaluated with respect to their ability to classify music induced affective states from the electroencephalogram recorded during a BCMI calibration task. Accuracies of up to 79.5% (p <; 0.001) are achieved with the support vector machine.","PeriodicalId":6863,"journal":{"name":"2015 International Conference on Affective Computing and Intelligent Interaction (ACII)","volume":"22 1","pages":"923-929"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Affective Computing and Intelligent Interaction (ACII)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACII.2015.7344685","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

Abstract

Brain-computer music interfaces (BCMI) provide a method to modulate an individuals affective state via the selection or generation of music according to their current affective state. Potential applications of such systems may include entertainment of therapeutic applications. We outline a proposed design for such a BCMI and seek a method for automatically differentiating different music induced affective states. Band-power features are explored for use in automatically identifying music-induced affective states. Additionally, a linear discriminant analysis classifier and a support vector machine are evaluated with respect to their ability to classify music induced affective states from the electroencephalogram recorded during a BCMI calibration task. Accuracies of up to 79.5% (p <; 0.001) are achieved with the support vector machine.
从脑电图中识别音乐诱发的情绪,用于脑机音乐接口
脑机音乐接口(BCMI)提供了一种根据个人当前的情感状态选择或生成音乐来调节个人情感状态的方法。这种系统的潜在应用可能包括娱乐治疗应用。我们提出了这样一个BCMI的设计方案,并寻求一种自动区分不同音乐诱导的情感状态的方法。探索了带功率特征用于自动识别音乐诱导的情感状态。此外,我们还评估了线性判别分析分类器和支持向量机从BCMI校准任务中记录的脑电图中对音乐诱发的情感状态进行分类的能力。准确度高达79.5% (p <;0.001)是用支持向量机实现的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信