{"title":"On spectral properties of one boundary value problem with a surface energy dissipation","authors":"O. A. Andronova, V. I. Voititskii","doi":"10.13108/2017-9-2-3","DOIUrl":null,"url":null,"abstract":"We study a spectral problem in a bounded domain Ω ⊂ Rm depending on a bounded operator coefficient Q > 0 and a dissipation parameter α > 0. In the general case we establish sufficient conditions ensuring that the problem has a discrete spectrum consisting of countably many isolated eigenvalues of finite multiplicity accumulating at infinity. We also establish the conditions, under which the system of root elements contains an Abel-Lidskii basis in the space L2(Ω). In model oneand two-dimensional problems we establish the localization of the eigenvalues and find critical values of α.","PeriodicalId":43644,"journal":{"name":"Ufa Mathematical Journal","volume":"152 1","pages":"3-16"},"PeriodicalIF":0.5000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ufa Mathematical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13108/2017-9-2-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1
Abstract
We study a spectral problem in a bounded domain Ω ⊂ Rm depending on a bounded operator coefficient Q > 0 and a dissipation parameter α > 0. In the general case we establish sufficient conditions ensuring that the problem has a discrete spectrum consisting of countably many isolated eigenvalues of finite multiplicity accumulating at infinity. We also establish the conditions, under which the system of root elements contains an Abel-Lidskii basis in the space L2(Ω). In model oneand two-dimensional problems we establish the localization of the eigenvalues and find critical values of α.