The Strong Menger Connectivity of the Directed k-Ary n-Cube

IF 0.5 Q4 COMPUTER SCIENCE, THEORY & METHODS
Guoqiang Xie, J. Meng
{"title":"The Strong Menger Connectivity of the Directed k-Ary n-Cube","authors":"Guoqiang Xie, J. Meng","doi":"10.1142/s0219265923500123","DOIUrl":null,"url":null,"abstract":"A strong digraph [Formula: see text] is strongly Menger (arc) connected if, for [Formula: see text], [Formula: see text] can reach [Formula: see text] by min[Formula: see text] internally (arc) disjoint-directed paths. A digraph [Formula: see text] is [Formula: see text](-arc)-fault-tolerant strongly Menger([Formula: see text]-(A)FTSM, for short) (arc) connected if [Formula: see text] is strongly Menger (arc) connected for every [Formula: see text](respectively, [Formula: see text]) with [Formula: see text]. A digraph [Formula: see text] is [Formula: see text]-conditional (arc)-fault-tolerant strongly Menger ([Formula: see text]-C(A)FTSM, for short) (arc) connected if [Formula: see text] is strongly Menger (arc) connected for every [Formula: see text](respectively, [Formula: see text]) with [Formula: see text] and [Formula: see text]. The directed [Formula: see text]-ary [Formula: see text]-cube [Formula: see text] [Formula: see text] and [Formula: see text] is a digraph with vertex set [Formula: see text]. For two vertices [Formula: see text] and [Formula: see text], [Formula: see text] dominates [Formula: see text] if there exists an integer [Formula: see text], [Formula: see text], satisfying [Formula: see text]mod [Formula: see text] and [Formula: see text], when [Formula: see text]. In this paper, we show that [Formula: see text] [Formula: see text] is [Formula: see text]-AFTSM arc connected when [Formula: see text], [Formula: see text]-FTSM connected when [Formula: see text], [Formula: see text]-CAFTSM arc connected when [Formula: see text], and [Formula: see text]-CFTSM connected when [Formula: see text].","PeriodicalId":53990,"journal":{"name":"JOURNAL OF INTERCONNECTION NETWORKS","volume":"11 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOURNAL OF INTERCONNECTION NETWORKS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219265923500123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

A strong digraph [Formula: see text] is strongly Menger (arc) connected if, for [Formula: see text], [Formula: see text] can reach [Formula: see text] by min[Formula: see text] internally (arc) disjoint-directed paths. A digraph [Formula: see text] is [Formula: see text](-arc)-fault-tolerant strongly Menger([Formula: see text]-(A)FTSM, for short) (arc) connected if [Formula: see text] is strongly Menger (arc) connected for every [Formula: see text](respectively, [Formula: see text]) with [Formula: see text]. A digraph [Formula: see text] is [Formula: see text]-conditional (arc)-fault-tolerant strongly Menger ([Formula: see text]-C(A)FTSM, for short) (arc) connected if [Formula: see text] is strongly Menger (arc) connected for every [Formula: see text](respectively, [Formula: see text]) with [Formula: see text] and [Formula: see text]. The directed [Formula: see text]-ary [Formula: see text]-cube [Formula: see text] [Formula: see text] and [Formula: see text] is a digraph with vertex set [Formula: see text]. For two vertices [Formula: see text] and [Formula: see text], [Formula: see text] dominates [Formula: see text] if there exists an integer [Formula: see text], [Formula: see text], satisfying [Formula: see text]mod [Formula: see text] and [Formula: see text], when [Formula: see text]. In this paper, we show that [Formula: see text] [Formula: see text] is [Formula: see text]-AFTSM arc connected when [Formula: see text], [Formula: see text]-FTSM connected when [Formula: see text], [Formula: see text]-CAFTSM arc connected when [Formula: see text], and [Formula: see text]-CFTSM connected when [Formula: see text].
有向k-Ary n-立方体的强Menger连通性
一个强有向图[公式:见文]是强门格尔(弧)连通的,如果对于[公式:见文],[公式:见文]可以通过最小的[公式:见文]内部(弧)不相交的路径到达[公式:见文]。有向图[公式:见文]是[公式:见文](-弧)-容错强门格尔([公式:见文]-(A)FTSM,简称)(弧)连接,如果[公式:见文]与[公式:见文](分别为[公式:见文])是强门格尔(弧)连接。有向图[公式:见文]是[公式:见文]-条件(弧)-容错强门格尔([公式:见文]-C(A)FTSM,简称)(弧)连接,如果[公式:见文]与[公式:见文]和[公式:见文]的每一个[公式:见文](分别为[公式:见文]和[公式:见文])是强门格尔(弧)连接。有向[公式:见文]-ary[公式:见文]-cube[公式:见文][公式:见文]和[公式:见文]是具有顶点集[公式:见文]的有向图。对于两个顶点[公式:见文]和[公式:见文],如果存在整数[公式:见文],[公式:见文],[公式:见文]优于[公式:见文],满足[公式:见文]mod[公式:见文]和[公式:见文],当[公式:见文]。在本文中,我们证明了[公式:见文][公式:见文]是[公式:见文]-AFTSM在[公式:见文]时连接,[公式:见文]-FTSM在[公式:见文]时连接,[公式:见文]-CAFTSM在[公式:见文]时连接,[公式:见文]-CFTSM在[公式:见文]时连接。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
JOURNAL OF INTERCONNECTION NETWORKS
JOURNAL OF INTERCONNECTION NETWORKS COMPUTER SCIENCE, THEORY & METHODS-
自引率
14.30%
发文量
121
期刊介绍: The Journal of Interconnection Networks (JOIN) is an international scientific journal dedicated to advancing the state-of-the-art of interconnection networks. The journal addresses all aspects of interconnection networks including their theory, analysis, design, implementation and application, and corresponding issues of communication, computing and function arising from (or applied to) a variety of multifaceted networks. Interconnection problems occur at different levels in the hardware and software design of communicating entities in integrated circuits, multiprocessors, multicomputers, and communication networks as diverse as telephone systems, cable network systems, computer networks, mobile communication networks, satellite network systems, the Internet and biological systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信