S. Siddiqui, M. Hussain, Amjad P. Khan, K. Akhtar, S. Siddiqui, Shakir Khan, Hui Liu, S. Mallidi, Grant Rudd, L. Daly, Paola L. Alacron, Filip Cuckov, S. C. Sharma, I. Ahmed, S. Bown, C. Hopper, J. Celli, S. Hasan, T. Hasan
{"title":"Photodynamic therapy as an alternative treatment modality for early stage buccal mucosa malignancy (Conference Presentation)","authors":"S. Siddiqui, M. Hussain, Amjad P. Khan, K. Akhtar, S. Siddiqui, Shakir Khan, Hui Liu, S. Mallidi, Grant Rudd, L. Daly, Paola L. Alacron, Filip Cuckov, S. C. Sharma, I. Ahmed, S. Bown, C. Hopper, J. Celli, S. Hasan, T. Hasan","doi":"10.1117/12.2525686","DOIUrl":null,"url":null,"abstract":"Oral cancers are the 8th most common cancer among males. In India, this corresponds to almost 80,000 new cases per year. With such a disease burden, oral cancers are a prime cause of morbidity and functional disability.\n\nConventional treatment for oral cancers is surgery and radiation therapy which are fraught with physical and functional side effects, and the high cost and infrastructure requirements present barriers to timely intervention for patients in rural and/or resource-limited areas. Motivated by these considerations we sought to evaluate photodynamic therapy (PDT) as an approach which is inherently conducive to adaptation for resource-limited settings and has previously shown promising clinical results for early stage oral lesions. In this study we evaluate a low-cost platform for aminolevulinic acid (ALA)-based PDT consisting of a portable 635nm fiber-coupled LED light source integrated with 3D printed applicators for stable intraoral light delivery and smartphone-based fluorescence imaging for treatment guidance.\n\nUsing this technology, we treated 18 subjects with histologically confirmed T1N0M0 lesions of the buccal mucosa with a mean diameter of 1.38 cm2 and micro-invasive (≤ 5mm depth) disease. A total light dose of 100 J/cm2 was delivered in 3 to 5 fractions to the buccal mucosa after oral administration of 60mg/kg ALA (in 3 aliquots of 20mg/kg). The post-PDT investigations showed a 72% success rate (no residual malignancy in follow-up biopsy). \n\nThe treatment was very well tolerated and has potential for broader dissemination into primary care sites and as an early intervention for pre-malignant conditions including submucous fibrosis and leucoplakia.","PeriodicalId":6365,"journal":{"name":"17th International Photodynamic Association World Congress","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"17th International Photodynamic Association World Congress","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2525686","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Oral cancers are the 8th most common cancer among males. In India, this corresponds to almost 80,000 new cases per year. With such a disease burden, oral cancers are a prime cause of morbidity and functional disability.
Conventional treatment for oral cancers is surgery and radiation therapy which are fraught with physical and functional side effects, and the high cost and infrastructure requirements present barriers to timely intervention for patients in rural and/or resource-limited areas. Motivated by these considerations we sought to evaluate photodynamic therapy (PDT) as an approach which is inherently conducive to adaptation for resource-limited settings and has previously shown promising clinical results for early stage oral lesions. In this study we evaluate a low-cost platform for aminolevulinic acid (ALA)-based PDT consisting of a portable 635nm fiber-coupled LED light source integrated with 3D printed applicators for stable intraoral light delivery and smartphone-based fluorescence imaging for treatment guidance.
Using this technology, we treated 18 subjects with histologically confirmed T1N0M0 lesions of the buccal mucosa with a mean diameter of 1.38 cm2 and micro-invasive (≤ 5mm depth) disease. A total light dose of 100 J/cm2 was delivered in 3 to 5 fractions to the buccal mucosa after oral administration of 60mg/kg ALA (in 3 aliquots of 20mg/kg). The post-PDT investigations showed a 72% success rate (no residual malignancy in follow-up biopsy).
The treatment was very well tolerated and has potential for broader dissemination into primary care sites and as an early intervention for pre-malignant conditions including submucous fibrosis and leucoplakia.