Abstract: Advances in Gyrokinetic Particle in Cell Simulation for Fusion Plasmas to Extreme Scale

Bei Wang, S. Ethier, W. Tang, K. Ibrahim, Kamesh Madduri, Samuel Williams, L. Oliker, T. Williams
{"title":"Abstract: Advances in Gyrokinetic Particle in Cell Simulation for Fusion Plasmas to Extreme Scale","authors":"Bei Wang, S. Ethier, W. Tang, K. Ibrahim, Kamesh Madduri, Samuel Williams, L. Oliker, T. Williams","doi":"10.1109/SC.Companion.2012.243","DOIUrl":null,"url":null,"abstract":"The Gyrokinetic Particle-in-cell (PIC) method has been successfully applied in studies of low-frequency microturbulence in magnetic fusion plasmas. While the excellent scaling of PIC codes on modern computing platforms is well established, significant challenges remain in achieving high on-chip concurrency for the new path to exascale systems. In addressing associated issues, it is necessary to deal with the basic gather-scatter operation and the relatively low computational intensity in the PIC method. Significant advancements have been achieved in optimizing gather-scatter operations in the gyrokinetic PIC method for next-generation multi-core CPU and GPU architectures. In particular, we will report on new techniques that improve locality, reduce memory conflict, and efficiently utilize shared memory on GPU's. Performance benchmarks on two high-end computing platforms -- the IBM BlueGene/Q (Mira) system at the Argonne Leadership Computing Facility (ALCF) and the Cray XK6 (Titan Dev) with the latest GPU at Oak Ridge Leadership Computing Facility (OLCF) - will be presented.","PeriodicalId":6346,"journal":{"name":"2012 SC Companion: High Performance Computing, Networking Storage and Analysis","volume":"15 1","pages":"1439-1440"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 SC Companion: High Performance Computing, Networking Storage and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SC.Companion.2012.243","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Gyrokinetic Particle-in-cell (PIC) method has been successfully applied in studies of low-frequency microturbulence in magnetic fusion plasmas. While the excellent scaling of PIC codes on modern computing platforms is well established, significant challenges remain in achieving high on-chip concurrency for the new path to exascale systems. In addressing associated issues, it is necessary to deal with the basic gather-scatter operation and the relatively low computational intensity in the PIC method. Significant advancements have been achieved in optimizing gather-scatter operations in the gyrokinetic PIC method for next-generation multi-core CPU and GPU architectures. In particular, we will report on new techniques that improve locality, reduce memory conflict, and efficiently utilize shared memory on GPU's. Performance benchmarks on two high-end computing platforms -- the IBM BlueGene/Q (Mira) system at the Argonne Leadership Computing Facility (ALCF) and the Cray XK6 (Titan Dev) with the latest GPU at Oak Ridge Leadership Computing Facility (OLCF) - will be presented.
摘要:陀螺动力学粒子在极端尺度聚变等离子体细胞模拟中的研究进展
回旋动力学粒子池(PIC)方法已成功地应用于磁聚变等离子体低频微湍流的研究。虽然PIC代码在现代计算平台上的出色扩展已经建立,但在实现到百亿亿级系统的新路径的高片上并发性方面仍然存在重大挑战。在解决相关问题时,需要处理PIC方法中基本的聚散运算和相对较低的计算强度。在下一代多核CPU和GPU架构的陀螺动力学PIC方法中,在优化收集-散射操作方面取得了重大进展。特别是,我们将报告提高局部性,减少内存冲突,并有效利用GPU上的共享内存的新技术。在两个高端计算平台上的性能基准测试——阿贡领导计算设施(ALCF)的IBM BlueGene/Q (Mira)系统和橡树岭领导计算设施(OLCF)最新GPU的Cray XK6 (Titan Dev)——将被展示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信