{"title":"Analysis of Rayleigh Taylor instability in nanofluids with rotation","authors":"Pooja Girotra, J. Ahuja, D. Verma","doi":"10.3934/NACO.2021018","DOIUrl":null,"url":null,"abstract":"This article focuses on the hidden insights about the Rayleigh-Taylor instability of two superimposed horizontal layers of nanofluids having different densities in the presence of rotation factor. Conservation equations are subjected to linear perturbations and further analyzed by using the Normal Mode technique. A dispersion relation incorporating the effects of surface tension, Atwood number, rotation factor and volume fraction of nanoparticles is obtained. Using Routh-Hurtwitz criterion the stable and unstable modes of Rayleigh-Taylor instability are discussed in the presence/absence of nanoparticles and presented through graphs. It is observed that in the absence/presence of nanoparticles, surface tension helps to stabilize the system and Atwood number has a destabilizing impact without the consideration of rotation factor. But if rotation parameter is considered (in the absence/presence of nanoparticles) then surface tension destabilizes the system while Atwood number has a stabilization effect (for a particular range of wave number). The volume fraction of nanoparticles destabilizes the system in the absence of rotation but in the presence of rotation the stability of the system is significantly stimulated by the nanoparticles.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/NACO.2021018","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3
Abstract
This article focuses on the hidden insights about the Rayleigh-Taylor instability of two superimposed horizontal layers of nanofluids having different densities in the presence of rotation factor. Conservation equations are subjected to linear perturbations and further analyzed by using the Normal Mode technique. A dispersion relation incorporating the effects of surface tension, Atwood number, rotation factor and volume fraction of nanoparticles is obtained. Using Routh-Hurtwitz criterion the stable and unstable modes of Rayleigh-Taylor instability are discussed in the presence/absence of nanoparticles and presented through graphs. It is observed that in the absence/presence of nanoparticles, surface tension helps to stabilize the system and Atwood number has a destabilizing impact without the consideration of rotation factor. But if rotation parameter is considered (in the absence/presence of nanoparticles) then surface tension destabilizes the system while Atwood number has a stabilization effect (for a particular range of wave number). The volume fraction of nanoparticles destabilizes the system in the absence of rotation but in the presence of rotation the stability of the system is significantly stimulated by the nanoparticles.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.