Adsorption of Cationic and Anionic Dyes from Aqueous Solution Using Sunflower Husk

IF 1 Q4 CHEMISTRY, MULTIDISCIPLINARY
Huda A. Jaber, M. A. Jabbar
{"title":"Adsorption of Cationic and Anionic Dyes from Aqueous Solution Using Sunflower Husk","authors":"Huda A. Jaber, M. A. Jabbar","doi":"10.23939/chcht15.04.567","DOIUrl":null,"url":null,"abstract":"The current study deals with the removal of cationic dye (brilliant green) and anionic dye (methyl orange) from wastewater by using sunflower husk as an adsorbent. The operation takes place batch wise by applying several concentrations of the dye solution with various adsorbent amounts, at a range of initial PH values and particle sizes at varying contact time intervals. The percent of dye removed for two dyes increased with increasing time and adsorbent dose and decreased with increasing the dye concentration and particle size. The equilibrium time differed according to conditions used. The optimum removal for brilliant green dye was 98 %, which was achieved at 50 ppm dye concentration, 2 g\\l adsorbent dose, 75 µm particles size and pH 7 at contact time of 1 h, compared with low removal for methyl orange that reached 54 % under optimum conditions (dye concentration 10 ppm, adsorbent dose 4 g/l, pH 3 at the same particles size and time). Kinetic studies were conducted and revealed that the adsorption was well defined by pseudo-second order model and could be described by the Langmuir isotherm.","PeriodicalId":9793,"journal":{"name":"Chemistry & Chemical Technology","volume":"15 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2021-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry & Chemical Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23939/chcht15.04.567","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

The current study deals with the removal of cationic dye (brilliant green) and anionic dye (methyl orange) from wastewater by using sunflower husk as an adsorbent. The operation takes place batch wise by applying several concentrations of the dye solution with various adsorbent amounts, at a range of initial PH values and particle sizes at varying contact time intervals. The percent of dye removed for two dyes increased with increasing time and adsorbent dose and decreased with increasing the dye concentration and particle size. The equilibrium time differed according to conditions used. The optimum removal for brilliant green dye was 98 %, which was achieved at 50 ppm dye concentration, 2 g\l adsorbent dose, 75 µm particles size and pH 7 at contact time of 1 h, compared with low removal for methyl orange that reached 54 % under optimum conditions (dye concentration 10 ppm, adsorbent dose 4 g/l, pH 3 at the same particles size and time). Kinetic studies were conducted and revealed that the adsorption was well defined by pseudo-second order model and could be described by the Langmuir isotherm.
向日葵壳对水溶液中阳离子和阴离子染料的吸附研究
研究了以葵花籽壳为吸附剂,去除废水中的阳离子染料(艳绿)和阴离子染料(甲基橙)。该操作是通过在不同的初始PH值和不同的接触时间间隔下,应用不同浓度的染料溶液和不同吸附剂量来分批进行的。两种染料的去除率随吸附时间和吸附剂剂量的增加而增加,随染料浓度和粒径的增加而降低。平衡时间根据所用条件的不同而不同。当染料浓度为50 ppm,吸附剂剂量为2g /l,粒径为75µm, pH为7,接触时间为1 h时,对艳绿染料的最佳去除率为98%;而在最佳条件下(染料浓度为10 ppm,吸附剂剂量为4 g/l,粒径和时间相同,pH为3),甲基橙的去除率较低,达到54%。动力学研究表明,吸附过程符合拟二级模型,可以用Langmuir等温线描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemistry & Chemical Technology
Chemistry & Chemical Technology CHEMISTRY, MULTIDISCIPLINARY-
CiteScore
1.70
自引率
44.40%
发文量
60
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信