Tractability of L2-approximation and integration in weighted Hermite spaces of finite smoothness

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
G. Leobacher, F. Pillichshammer, Adrian Ebert
{"title":"Tractability of L2-approximation and integration in weighted Hermite spaces of finite smoothness","authors":"G. Leobacher, F. Pillichshammer, Adrian Ebert","doi":"10.48550/arXiv.2212.05780","DOIUrl":null,"url":null,"abstract":"In this paper we consider integration and $L_2$-approximation for functions over $\\RR^s$ from weighted Hermite spaces. The first part of the paper is devoted to a comparison of several weighted Hermite spaces that appear in literature, which is interesting on its own. Then we study tractability of the integration and $L_2$-approximation problem for the introduced Hermite spaces, which describes the growth rate of the information complexity when the error threshold $\\varepsilon$ tends to 0 and the problem dimension $s$ grows to infinity. Our main results are characterizations of tractability in terms of the involved weights, which model the importance of the successive coordinate directions for functions from the weighted Hermite spaces.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2022-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.48550/arXiv.2212.05780","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper we consider integration and $L_2$-approximation for functions over $\RR^s$ from weighted Hermite spaces. The first part of the paper is devoted to a comparison of several weighted Hermite spaces that appear in literature, which is interesting on its own. Then we study tractability of the integration and $L_2$-approximation problem for the introduced Hermite spaces, which describes the growth rate of the information complexity when the error threshold $\varepsilon$ tends to 0 and the problem dimension $s$ grows to infinity. Our main results are characterizations of tractability in terms of the involved weights, which model the importance of the successive coordinate directions for functions from the weighted Hermite spaces.
有限光滑加权Hermite空间中l2逼近与积分的可跟踪性
本文研究了加权Hermite空间中$\RR^s$上函数的积分和$L_2$逼近问题。论文的第一部分致力于比较文学中出现的几个加权赫米特空间,这本身就很有趣。然后研究了引入的Hermite空间的积分和$L_2$逼近问题的可跟踪性,描述了误差阈值$ varepsilon$趋近于0,问题维数$s$趋近于无穷时信息复杂度的增长速度。我们的主要结果是根据所涉及的权重来描述可跟踪性,这对来自加权Hermite空间的函数的连续坐标方向的重要性进行了建模。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信