Higher $\mathcal{L}$-invariants for $\mathrm{GL}_3 (\mathbb{Q}_p)$ and local-global compatibility

IF 1.8 2区 数学 Q1 MATHEMATICS
C. Breuil, Yiwen Ding
{"title":"Higher $\\mathcal{L}$-invariants for $\\mathrm{GL}_3 (\\mathbb{Q}_p)$ and local-global compatibility","authors":"C. Breuil, Yiwen Ding","doi":"10.4310/cjm.2020.v8.n4.a2","DOIUrl":null,"url":null,"abstract":"Let $\\rho_p$ be a $3$-dimensional $p$-adic semi-stable representation of $\\mathrm{Gal}(\\overline{\\mathbb{Q}_p}/\\mathbb{Q}_p)$ with Hodge-Tate weights $(0,1,2)$ (up to shift) and such that $N^2\\ne 0$ on $D_{\\mathrm{st}}(\\rho_p)$. When $\\rho_p$ comes from an automorphic representation $\\pi$ of $G(\\mathbb{A}_{F^+})$ (for a unitary group $G$ over a totally real field $F^+$ which is compact at infinite places and $\\mathrm{GL}_3$ at $p$-adic places), we show under mild genericity assumptions that the associated Hecke-isotypic subspaces of the Banach spaces of $p$-adic automorphic forms on $G(\\mathbb{A}_{F^+}^\\infty)$ of arbitrary fixed tame level contain (copies of) a unique admissible finite length locally analytic representation of $\\mathrm{GL}_3(\\mathbb{Q}_p)$ which only depends on and completely determines $\\rho_p$.","PeriodicalId":48573,"journal":{"name":"Cambridge Journal of Mathematics","volume":"39 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2018-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cambridge Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cjm.2020.v8.n4.a2","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

Abstract

Let $\rho_p$ be a $3$-dimensional $p$-adic semi-stable representation of $\mathrm{Gal}(\overline{\mathbb{Q}_p}/\mathbb{Q}_p)$ with Hodge-Tate weights $(0,1,2)$ (up to shift) and such that $N^2\ne 0$ on $D_{\mathrm{st}}(\rho_p)$. When $\rho_p$ comes from an automorphic representation $\pi$ of $G(\mathbb{A}_{F^+})$ (for a unitary group $G$ over a totally real field $F^+$ which is compact at infinite places and $\mathrm{GL}_3$ at $p$-adic places), we show under mild genericity assumptions that the associated Hecke-isotypic subspaces of the Banach spaces of $p$-adic automorphic forms on $G(\mathbb{A}_{F^+}^\infty)$ of arbitrary fixed tame level contain (copies of) a unique admissible finite length locally analytic representation of $\mathrm{GL}_3(\mathbb{Q}_p)$ which only depends on and completely determines $\rho_p$.
$\ mathm {GL}_3 (\mathbb{Q}_p)$的更高$\mathcal{L}$-不变量和局部-全局兼容性
设$\rho_p$为$\mathrm{Gal}(\overline{\mathbb{Q}_p}/\mathbb{Q}_p)$的$3$维$p$进阶半稳定表示,具有Hodge-Tate权值$(0,1,2)$(直到移位),并且使得$N^2\ne 0$在$D_{\mathrm{st}}(\rho_p)$上。当$\rho_p$来自$G(\mathbb{A}_{F^+})$的自同构表示$\pi$时(对于全实数域$F^+$上的酉群$G$,在无限位紧致,在$p$进位紧致$\mathrm{GL}_3$),在温和的一般假设下,我们证明了任意固定水平$G(\mathbb{A}_{F^+}^\infty)$上$p$ -进自同构形式的Banach空间的相关hecke -同型子空间包含一个唯一的可容许有限长度的$\mathrm{GL}_3(\mathbb{Q}_p)$的局部解析表示的(副本),该表示仅依赖并完全决定$\rho_p$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
7
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信