Parallel complexity for nilpotent groups

A. Myasnikov, A. Weiss
{"title":"Parallel complexity for nilpotent groups","authors":"A. Myasnikov, A. Weiss","doi":"10.1142/s0218196722500382","DOIUrl":null,"url":null,"abstract":"Recently, Macdonald et al. showed that many algorithmic problems for finitely generated nilpotent groups including computation of normal forms, the subgroup membership problem, the conjugacy problem, and computation of subgroup presentations can be done in [Formula: see text]. Here, we follow their approach and show that all these problems are complete for the uniform circuit class [Formula: see text] — even if an [Formula: see text]-generated nilpotent group of class at most [Formula: see text] is part of the input but [Formula: see text] and [Formula: see text] are fixed constants. In particular, unary encoded systems of a bounded number of linear equations over the integers can be solved in [Formula: see text]. In order to solve these problems in [Formula: see text], we show that the unary version of the extended gcd problem (compute greatest common divisors and express them as linear combinations) is in [Formula: see text]. Moreover, if we allow a certain binary representation of the inputs, then the word problem and computation of normal forms is still in uniform [Formula: see text], while all the other problems we examine are shown to be [Formula: see text]-Turing-reducible to the binary extended gcd problem.","PeriodicalId":13615,"journal":{"name":"Int. J. Algebra Comput.","volume":"71 1","pages":"895-928"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Algebra Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218196722500382","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, Macdonald et al. showed that many algorithmic problems for finitely generated nilpotent groups including computation of normal forms, the subgroup membership problem, the conjugacy problem, and computation of subgroup presentations can be done in [Formula: see text]. Here, we follow their approach and show that all these problems are complete for the uniform circuit class [Formula: see text] — even if an [Formula: see text]-generated nilpotent group of class at most [Formula: see text] is part of the input but [Formula: see text] and [Formula: see text] are fixed constants. In particular, unary encoded systems of a bounded number of linear equations over the integers can be solved in [Formula: see text]. In order to solve these problems in [Formula: see text], we show that the unary version of the extended gcd problem (compute greatest common divisors and express them as linear combinations) is in [Formula: see text]. Moreover, if we allow a certain binary representation of the inputs, then the word problem and computation of normal forms is still in uniform [Formula: see text], while all the other problems we examine are shown to be [Formula: see text]-Turing-reducible to the binary extended gcd problem.
幂零群的并行复杂度
最近,Macdonald等人证明了有限生成的幂零群的许多算法问题,包括正规形式的计算、子群隶属问题、共轭问题和子群表示的计算,都可以在[公式:见原文]中完成。在这里,我们遵循他们的方法,并证明所有这些问题对于均匀电路类[公式:见文]都是完整的——即使[公式:见文]生成的类的幂零群最多[公式:见文]是输入的一部分,但[公式:见文]和[公式:见文]是固定常数。特别地,整数上有限数量的线性方程的一元编码系统可以在[公式:见文本]中求解。为了解决[公式:见文]中的这些问题,我们证明了扩展gcd问题(计算最大公因数并将其表示为线性组合)的一元版本在[公式:见文]中。此外,如果我们允许输入的某种二进制表示,那么单词问题和范式的计算仍然是统一的[公式:见文本],而我们研究的所有其他问题都被证明是[公式:见文本]-图灵可简化为二进制扩展的gcd问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信