Optimality conditions for robust nonsmooth multiobjective optimization problems in Asplund spaces

Pub Date : 2021-05-29 DOI:10.36045/j.bbms.210705
Maryam Saadati, M. Oveisiha
{"title":"Optimality conditions for robust nonsmooth multiobjective optimization problems in Asplund spaces","authors":"Maryam Saadati, M. Oveisiha","doi":"10.36045/j.bbms.210705","DOIUrl":null,"url":null,"abstract":"We employ a fuzzy optimality condition for the Fr´echet subdifferential and some ad-vanced techniques of variational analysis such as formulae for the subdifferentials of an infinite family of nonsmooth functions and the coderivative scalarization to investigate robust optimality condition and robust duality for a nonsmooth/nonconvex multiobjective optimization problem dealing with uncertain constraints in arbitrary Asplund spaces. We establish necessary optimality conditions for weakly and properly robust efficient solutions of the problem in terms of the Mordukhovich subdifferentials of the related functions. Further, sufficient conditions for weakly and properly robust efficient solutions as well as for robust efficient solutions of the problem are provided by presenting new concepts of generalized convexity. Finally, we formulate a Mond-Weir-type robust dual problem to the reference problem, and examine weak, strong, and converse duality relations between them under the pseudo convexity assumptions.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.36045/j.bbms.210705","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

We employ a fuzzy optimality condition for the Fr´echet subdifferential and some ad-vanced techniques of variational analysis such as formulae for the subdifferentials of an infinite family of nonsmooth functions and the coderivative scalarization to investigate robust optimality condition and robust duality for a nonsmooth/nonconvex multiobjective optimization problem dealing with uncertain constraints in arbitrary Asplund spaces. We establish necessary optimality conditions for weakly and properly robust efficient solutions of the problem in terms of the Mordukhovich subdifferentials of the related functions. Further, sufficient conditions for weakly and properly robust efficient solutions as well as for robust efficient solutions of the problem are provided by presenting new concepts of generalized convexity. Finally, we formulate a Mond-Weir-type robust dual problem to the reference problem, and examine weak, strong, and converse duality relations between them under the pseudo convexity assumptions.
分享
查看原文
Asplund空间中鲁棒非光滑多目标优化问题的最优性条件
本文利用模糊最优性条件和变分分析的一些先进技术,如无限非光滑函数族的子微分公式和协导数标化,研究了任意Asplund空间中具有不确定约束的非光滑/非凸多目标优化问题的鲁棒最优性条件和鲁棒对偶性。我们利用相关函数的Mordukhovich子微分建立了问题的弱和适当鲁棒有效解的必要最优性条件。进一步,通过提出广义凸性的新概念,给出了问题的弱和适当鲁棒有效解以及鲁棒有效解的充分条件。最后,我们给出了参考问题的一个mond - weir型鲁棒对偶问题,并在伪凸性假设下检验了它们之间的弱、强、逆对偶关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信