Robust Reference-Based Super-Resolution With Similarity-Aware Deformable Convolution

Gyumin Shim, Jinsun Park, I. Kweon
{"title":"Robust Reference-Based Super-Resolution With Similarity-Aware Deformable Convolution","authors":"Gyumin Shim, Jinsun Park, I. Kweon","doi":"10.1109/CVPR42600.2020.00845","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a novel and efficient reference feature extraction module referred to as the Similarity Search and Extraction Network (SSEN) for reference-based super-resolution (RefSR) tasks. The proposed module extracts aligned relevant features from a reference image to increase the performance over single image super-resolution (SISR) methods. In contrast to conventional algorithms which utilize brute-force searches or optical flow estimations, the proposed algorithm is end-to-end trainable without any additional supervision or heavy computation, predicting the best match with a single network forward operation. Moreover, the proposed module is aware of not only the best matching position but also the relevancy of the best match. This makes our algorithm substantially robust when irrelevant reference images are given, overcoming the major cause of the performance degradation when using existing RefSR methods. Furthermore, our module can be utilized for self-similarity SR if no reference image is available. Experimental results demonstrate the superior performance of the proposed algorithm compared to previous works both quantitatively and qualitatively.","PeriodicalId":6715,"journal":{"name":"2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"85 3 1","pages":"8422-8431"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"63","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR42600.2020.00845","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 63

Abstract

In this paper, we propose a novel and efficient reference feature extraction module referred to as the Similarity Search and Extraction Network (SSEN) for reference-based super-resolution (RefSR) tasks. The proposed module extracts aligned relevant features from a reference image to increase the performance over single image super-resolution (SISR) methods. In contrast to conventional algorithms which utilize brute-force searches or optical flow estimations, the proposed algorithm is end-to-end trainable without any additional supervision or heavy computation, predicting the best match with a single network forward operation. Moreover, the proposed module is aware of not only the best matching position but also the relevancy of the best match. This makes our algorithm substantially robust when irrelevant reference images are given, overcoming the major cause of the performance degradation when using existing RefSR methods. Furthermore, our module can be utilized for self-similarity SR if no reference image is available. Experimental results demonstrate the superior performance of the proposed algorithm compared to previous works both quantitatively and qualitatively.
具有相似性感知的可变形卷积鲁棒参考超分辨率
本文针对基于参考的超分辨率(RefSR)任务,提出了一种新颖高效的参考特征提取模块——相似度搜索与提取网络(SSEN)。该模块从参考图像中提取对齐的相关特征,以提高单图像超分辨率(SISR)方法的性能。与使用暴力搜索或光流估计的传统算法相比,该算法是端到端可训练的,无需任何额外的监督或繁重的计算,预测与单个网络前向操作的最佳匹配。此外,该模块不仅知道最佳匹配位置,而且知道最佳匹配的相关性。这使得我们的算法在给定不相关参考图像时具有很强的鲁棒性,克服了使用现有RefSR方法时性能下降的主要原因。此外,在没有参考图像的情况下,我们的模块可以用于自相似SR。实验结果表明,该算法在定量和定性上都优于前人的研究成果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信