Document blur detection using edge profile mining

S. Maheshwari, P. Rai, Gopal Sharma, Vineet Gandhi
{"title":"Document blur detection using edge profile mining","authors":"S. Maheshwari, P. Rai, Gopal Sharma, Vineet Gandhi","doi":"10.1145/3009977.3009982","DOIUrl":null,"url":null,"abstract":"We present an algorithm for automatic blur detection of document images using a novel approach based on edge intensity profiles. Our main insight is that the edge profiles are a strong indicator of the blur present in the image, with steep profiles implying sharper regions and gradual profiles implying blurred regions. Our approach first retrieves the profiles for each point of intensity transition (each edge point) along the gradient and then uses them to output a quantitative measure indicating the extent of blur in the input image. The real time performance of the proposed approach makes it suitable for most applications. Additionally, our method works for both hand written and digital documents and is agnostic to the font types and sizes, which gives it a major advantage over the currently prevalent learning based approaches. Extensive quantitative and qualitative experiments over two different datasets show that our method outperforms almost all algorithms in current state of the art by a significant margin, especially in cross dataset experiments.","PeriodicalId":93806,"journal":{"name":"Proceedings. Indian Conference on Computer Vision, Graphics & Image Processing","volume":"45 1","pages":"23:1-23:7"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Indian Conference on Computer Vision, Graphics & Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3009977.3009982","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

We present an algorithm for automatic blur detection of document images using a novel approach based on edge intensity profiles. Our main insight is that the edge profiles are a strong indicator of the blur present in the image, with steep profiles implying sharper regions and gradual profiles implying blurred regions. Our approach first retrieves the profiles for each point of intensity transition (each edge point) along the gradient and then uses them to output a quantitative measure indicating the extent of blur in the input image. The real time performance of the proposed approach makes it suitable for most applications. Additionally, our method works for both hand written and digital documents and is agnostic to the font types and sizes, which gives it a major advantage over the currently prevalent learning based approaches. Extensive quantitative and qualitative experiments over two different datasets show that our method outperforms almost all algorithms in current state of the art by a significant margin, especially in cross dataset experiments.
使用边缘轮廓挖掘的文档模糊检测
我们提出了一种基于边缘强度轮廓的文档图像自动模糊检测算法。我们的主要观点是,边缘轮廓是图像中存在模糊的一个强有力的指标,陡峭的轮廓意味着更清晰的区域,渐变的轮廓意味着模糊的区域。我们的方法首先检索沿梯度的每个强度过渡点(每个边缘点)的轮廓,然后使用它们输出指示输入图像中模糊程度的定量测量。该方法的实时性使其适用于大多数应用。此外,我们的方法适用于手写和数字文档,并且与字体类型和大小无关,这使得它比当前流行的基于学习的方法具有主要优势。在两个不同的数据集上进行的大量定量和定性实验表明,我们的方法在很大程度上优于当前最先进的几乎所有算法,特别是在跨数据集实验中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信