{"title":"On superintegral Kleinian sphere packings, bugs, and arithmetic groups","authors":"M. Kapovich, Alex Kontorovich","doi":"10.1515/crelle-2023-0004","DOIUrl":null,"url":null,"abstract":"Abstract We develop the notion of a Kleinian Sphere Packing, a generalization of “crystallographic” (Apollonian-like) sphere packings defined in [A. Kontorovich and K. Nakamura, Geometry and arithmetic of crystallographic sphere packings, Proc. Natl. Acad. Sci. USA 116 2019, 2, 436–441]. Unlike crystallographic packings, Kleinian packings exist in all dimensions, as do “superintegral” such. We extend the Arithmeticity Theorem to Kleinian packings, that is, the superintegral ones come from ℚ {{\\mathbb{Q}}} -arithmetic lattices of simplest type. The same holds for more general objects we call Kleinian Bugs, in which the spheres need not be disjoint but can meet with dihedral angles π m {\\frac{\\pi}{m}} for finitely many m. We settle two questions from Kontorovich and Nakamura (2019): (i) that the Arithmeticity Theorem is in general false over number fields, and (ii) that integral packings only arise from non-uniform lattices.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/crelle-2023-0004","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 12
Abstract
Abstract We develop the notion of a Kleinian Sphere Packing, a generalization of “crystallographic” (Apollonian-like) sphere packings defined in [A. Kontorovich and K. Nakamura, Geometry and arithmetic of crystallographic sphere packings, Proc. Natl. Acad. Sci. USA 116 2019, 2, 436–441]. Unlike crystallographic packings, Kleinian packings exist in all dimensions, as do “superintegral” such. We extend the Arithmeticity Theorem to Kleinian packings, that is, the superintegral ones come from ℚ {{\mathbb{Q}}} -arithmetic lattices of simplest type. The same holds for more general objects we call Kleinian Bugs, in which the spheres need not be disjoint but can meet with dihedral angles π m {\frac{\pi}{m}} for finitely many m. We settle two questions from Kontorovich and Nakamura (2019): (i) that the Arithmeticity Theorem is in general false over number fields, and (ii) that integral packings only arise from non-uniform lattices.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.