Searching for a truly "iso-metabolic" gas challenge in physiological MRI.

IF 0.1 3区 艺术学 0 MUSIC
MUSICAL TIMES Pub Date : 2017-02-01 Epub Date: 2016-07-20 DOI:10.1177/0271678X16638103
Shin-Lei Peng, Harshan Ravi, Min Sheng, Binu P Thomas, Hanzhang Lu
{"title":"Searching for a truly \"iso-metabolic\" gas challenge in physiological MRI.","authors":"Shin-Lei Peng, Harshan Ravi, Min Sheng, Binu P Thomas, Hanzhang Lu","doi":"10.1177/0271678X16638103","DOIUrl":null,"url":null,"abstract":"<p><p>Hypercapnia challenge (e.g. inhalation of CO<sub>2</sub>) has been used in calibrated fMRI as well as in the mapping of vascular reactivity in cerebrovascular diseases. An important assumption underlying these measurements is that CO<sub>2</sub> is a pure vascular challenge but does not alter neural activity. However, recent reports have suggested that CO<sub>2</sub> inhalation may suppress neural activity and brain metabolic rate. Therefore, the goal of this study is to propose and test a gas challenge that is truly \"iso-metabolic,\" by adding a hypoxic component to the hypercapnic challenge, since hypoxia has been shown to enhance cerebral metabolic rate of oxygen (CMRO<sub>2</sub>). Measurement of global CMRO<sub>2</sub> under various gas challenge conditions revealed that, while hypercapnia (P = 0.002) and hypoxia (P = 0.002) individually altered CMRO<sub>2</sub> (by -7.6 ± 1.7% and 16.7 ± 4.1%, respectively), inhalation of hypercapnic-hypoxia gas (5% CO<sub>2</sub>/13% O<sub>2</sub>) did not change brain metabolism (CMRO<sub>2</sub> change: 1.5 ± 3.9%, P = 0.92). Moreover, cerebral blood flow response to the hypercapnic-hypoxia challenge (in terms of % change per mmHg CO<sub>2</sub> change) was even greater than that to hypercapnia alone (P = 0.007). Findings in this study suggest that hypercapnic-hypoxia gas challenge may be a useful maneuver in physiological MRI as it preserves vasodilatory response yet does not alter brain metabolism.</p>","PeriodicalId":51900,"journal":{"name":"MUSICAL TIMES","volume":"128 1","pages":"715-725"},"PeriodicalIF":0.1000,"publicationDate":"2017-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5381460/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MUSICAL TIMES","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/0271678X16638103","RegionNum":3,"RegionCategory":"艺术学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2016/7/20 0:00:00","PubModel":"Epub","JCR":"0","JCRName":"MUSIC","Score":null,"Total":0}
引用次数: 0

Abstract

Hypercapnia challenge (e.g. inhalation of CO2) has been used in calibrated fMRI as well as in the mapping of vascular reactivity in cerebrovascular diseases. An important assumption underlying these measurements is that CO2 is a pure vascular challenge but does not alter neural activity. However, recent reports have suggested that CO2 inhalation may suppress neural activity and brain metabolic rate. Therefore, the goal of this study is to propose and test a gas challenge that is truly "iso-metabolic," by adding a hypoxic component to the hypercapnic challenge, since hypoxia has been shown to enhance cerebral metabolic rate of oxygen (CMRO2). Measurement of global CMRO2 under various gas challenge conditions revealed that, while hypercapnia (P = 0.002) and hypoxia (P = 0.002) individually altered CMRO2 (by -7.6 ± 1.7% and 16.7 ± 4.1%, respectively), inhalation of hypercapnic-hypoxia gas (5% CO2/13% O2) did not change brain metabolism (CMRO2 change: 1.5 ± 3.9%, P = 0.92). Moreover, cerebral blood flow response to the hypercapnic-hypoxia challenge (in terms of % change per mmHg CO2 change) was even greater than that to hypercapnia alone (P = 0.007). Findings in this study suggest that hypercapnic-hypoxia gas challenge may be a useful maneuver in physiological MRI as it preserves vasodilatory response yet does not alter brain metabolism.

在生理学磁共振成像中寻找真正的 "等代谢 "气体挑战。
高碳酸血症挑战(如吸入二氧化碳)已被用于校准 fMRI 以及绘制脑血管疾病的血管反应图。这些测量的一个重要假设是,二氧化碳是一种纯粹的血管挑战,但不会改变神经活动。然而,最近的报告表明,吸入二氧化碳可能会抑制神经活动和大脑代谢率。因此,本研究的目标是提出并测试一种真正 "等代谢 "的气体挑战,即在高碳酸血症挑战中加入低氧成分,因为低氧已被证明能提高脑氧代谢率(CMRO2)。在各种气体挑战条件下测量全球 CMRO2 发现,虽然高碳酸血症(P = 0.002)和缺氧(P = 0.002)会单独改变 CMRO2(分别为 -7.6 ± 1.7% 和 16.7 ± 4.1%),但吸入高碳酸血症-缺氧气体(5% CO2/13% O2)不会改变大脑代谢(CMRO2 变化:1.5 ± 3.9%,P = 0.92)。此外,脑血流对高碳酸血症-缺氧挑战的反应(以每毫米汞柱二氧化碳变化的百分比变化计算)甚至比单独对高碳酸血症的反应更大(P = 0.007)。本研究的结果表明,高碳酸血氧气体挑战可能是生理学磁共振成像的一种有用方法,因为它既能保留血管舒张反应,又不会改变脑代谢。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
MUSICAL TIMES
MUSICAL TIMES MUSIC-
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信