Fast multiplication of binary polynomials with the forthcoming vectorized VPCLMULQDQ instruction

Nir Drucker, S. Gueron, V. Krasnov
{"title":"Fast multiplication of binary polynomials with the forthcoming vectorized VPCLMULQDQ instruction","authors":"Nir Drucker, S. Gueron, V. Krasnov","doi":"10.1109/ARITH.2018.8464777","DOIUrl":null,"url":null,"abstract":"Polynomial multiplication over binary fields $\\mathbb{F}_{2^{n}}$ is a common primitive, used for example by current cryptosystems such as AES-GCM (with $n=128)$. It also turns out to be a primitive for other cryptosystems, that are being designed for the Post Quantum era, with values $n\\gg 128$. Examples from the recent submissions to the NIST Post-Quantum Cryptography project, are BIKE, LEDAKem, and GeMSS, where the performance of the polynomial multiplications, is significant. Therefore, efficient polynomial multiplication over $\\mathbb{F}_{2^{n}}$, with large $n$, is a significant emerging optimization target. Anticipating future applications, Intel has recently announced that its future architecture (codename “Ice Lake”) will introduce a new vectorized way to use the current VPCLMULQDQ instruction. In this paper, we demonstrate how to use this instruction for accelerating polynomial multiplication. Our analysis shows a prediction for at least 2x speedup for multiplications with polynomials of degree 512 or more.","PeriodicalId":6576,"journal":{"name":"2018 IEEE 25th Symposium on Computer Arithmetic (ARITH)","volume":"71 1","pages":"115-119"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 25th Symposium on Computer Arithmetic (ARITH)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ARITH.2018.8464777","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Polynomial multiplication over binary fields $\mathbb{F}_{2^{n}}$ is a common primitive, used for example by current cryptosystems such as AES-GCM (with $n=128)$. It also turns out to be a primitive for other cryptosystems, that are being designed for the Post Quantum era, with values $n\gg 128$. Examples from the recent submissions to the NIST Post-Quantum Cryptography project, are BIKE, LEDAKem, and GeMSS, where the performance of the polynomial multiplications, is significant. Therefore, efficient polynomial multiplication over $\mathbb{F}_{2^{n}}$, with large $n$, is a significant emerging optimization target. Anticipating future applications, Intel has recently announced that its future architecture (codename “Ice Lake”) will introduce a new vectorized way to use the current VPCLMULQDQ instruction. In this paper, we demonstrate how to use this instruction for accelerating polynomial multiplication. Our analysis shows a prediction for at least 2x speedup for multiplications with polynomials of degree 512 or more.
二元多项式的快速乘法与即将到来的矢量化VPCLMULQDQ指令
二进制字段$\mathbb{F}_{2^{n}}$上的多项式乘法是一种常见的原语,例如用于当前的密码系统,例如AES-GCM(其中$n=128)$。它也被证明是为后量子时代设计的其他密码系统的原语,其值为$n\gg 128$。最近提交给NIST后量子密码学项目的例子是BIKE、LEDAKem和GeMSS,其中多项式乘法的性能非常重要。因此,在$\mathbb{F}_{2^{n}}$上进行有效的多项式乘法,并使用较大的$n$,是一个重要的新兴优化目标。展望未来的应用,英特尔最近宣布其未来架构(代号“冰湖”)将引入一种新的矢量化方式来使用当前的VPCLMULQDQ指令。在本文中,我们演示了如何使用这个指令来加速多项式乘法。我们的分析显示,对于512次或更多次多项式的乘法,预测至少有2倍的加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信