M. Schilling, U. Schwalbe, T. Szalai, T. Heidrich, F. Endert, S. Ivanov, F. Cuibus
{"title":"System voltage estimation for a decentralized electromotive drive train system","authors":"M. Schilling, U. Schwalbe, T. Szalai, T. Heidrich, F. Endert, S. Ivanov, F. Cuibus","doi":"10.1109/EPE.2014.6910991","DOIUrl":null,"url":null,"abstract":"At present, there are two typical electromotive drive train system (EDTS) configurations on the market. On the one hand, there are high voltage systems for conventional cars with system voltages in the range of 400 V - 800 V. In industrial truck and fork lifter applications, there are low voltage solutions with a system voltage of 80 V. A main question at this topic is: “Which system battery voltage is the best solution for EDTSs?” In future, the development-goals of EDTSs are high efficiency, high power density, low costs and system safety [1]. This paper will show the way of estimating the best system voltage regarding the named development goals. The main focus of the paper is on the system efficiency and losses simulation. Therefore a system simulation with a real measured driving cycle input will be developed.","PeriodicalId":6508,"journal":{"name":"2014 16th European Conference on Power Electronics and Applications","volume":"30 1","pages":"1-10"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 16th European Conference on Power Electronics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EPE.2014.6910991","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
At present, there are two typical electromotive drive train system (EDTS) configurations on the market. On the one hand, there are high voltage systems for conventional cars with system voltages in the range of 400 V - 800 V. In industrial truck and fork lifter applications, there are low voltage solutions with a system voltage of 80 V. A main question at this topic is: “Which system battery voltage is the best solution for EDTSs?” In future, the development-goals of EDTSs are high efficiency, high power density, low costs and system safety [1]. This paper will show the way of estimating the best system voltage regarding the named development goals. The main focus of the paper is on the system efficiency and losses simulation. Therefore a system simulation with a real measured driving cycle input will be developed.