{"title":"How to extend Elo: a Bayesian perspective","authors":"Martin Ingram","doi":"10.1515/JQAS-2020-0066","DOIUrl":null,"url":null,"abstract":"Abstract The Elo rating system, originally designed for rating chess players, has since become a popular way to estimate competitors’ time-varying skills in many sports. Though the self-correcting Elo algorithm is simple and intuitive, it lacks a probabilistic justification which can make it hard to extend. In this paper, we present a simple connection between approximate Bayesian posterior mode estimation and Elo. We provide a novel justification of the approximations made by linking Elo to steady-state Kalman filtering. Our second key contribution is to observe that the derivation suggests a straightforward procedure for extending Elo. We use the procedure to derive versions of Elo incorporating margins of victory, correlated skills across different playing surfaces, and differing skills by tournament level in tennis. Combining all these extensions results in the most complete version of Elo presented for the sport yet. We evaluate the derived models on two seasons of men’s professional tennis matches (2018 and 2019). The best-performing model was able to predict matches with higher accuracy than both Elo and Glicko (65.8% compared to 63.7 and 63.5%, respectively) and a higher mean log-likelihood (−0.615 compared to −0.632 and −0.633, respectively), demonstrating the proposed model’s ability to improve predictions.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/JQAS-2020-0066","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 6
Abstract
Abstract The Elo rating system, originally designed for rating chess players, has since become a popular way to estimate competitors’ time-varying skills in many sports. Though the self-correcting Elo algorithm is simple and intuitive, it lacks a probabilistic justification which can make it hard to extend. In this paper, we present a simple connection between approximate Bayesian posterior mode estimation and Elo. We provide a novel justification of the approximations made by linking Elo to steady-state Kalman filtering. Our second key contribution is to observe that the derivation suggests a straightforward procedure for extending Elo. We use the procedure to derive versions of Elo incorporating margins of victory, correlated skills across different playing surfaces, and differing skills by tournament level in tennis. Combining all these extensions results in the most complete version of Elo presented for the sport yet. We evaluate the derived models on two seasons of men’s professional tennis matches (2018 and 2019). The best-performing model was able to predict matches with higher accuracy than both Elo and Glicko (65.8% compared to 63.7 and 63.5%, respectively) and a higher mean log-likelihood (−0.615 compared to −0.632 and −0.633, respectively), demonstrating the proposed model’s ability to improve predictions.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.