Stochastic Newton Sampler: R Package sns

A. S. Mahani, Asad Hasan, Marshall Jiang, M. Sharabiani
{"title":"Stochastic Newton Sampler: R Package sns","authors":"A. S. Mahani, Asad Hasan, Marshall Jiang, M. Sharabiani","doi":"10.18637/JSS.V074.C02","DOIUrl":null,"url":null,"abstract":"The R package sns implements Stochastic Newton Sampler (SNS), a Metropolis-Hastings Monte Carlo Markov Chain algorithm where the proposal density function is a multivariate Gaussian based on a local, second-order Taylor series expansion of log-density. The mean of the proposal function is the full Newton step in Newton-Raphson optimization algorithm. Taking advantage of the local, multivariate geometry captured in log-density Hessian allows SNS to be more efficient than univariate samplers, approaching independent sampling as the density function increasingly resembles a multivariate Gaussian. SNS requires the log-density Hessian to be negative-definite everywhere in order to construct a valid proposal function. This property holds, or can be easily checked, for many GLM-like models. When initial point is far from density peak, running SNS in non-stochastic mode by taking the Newton step, augmented with with line search, allows the MCMC chain to converge to high-density areas faster. For high-dimensional problems, partitioning of state space into lower-dimensional subsets, and applying SNS to the subsets within a Gibbs sampling framework can significantly improve the mixing of SNS chains. In addition to the above strategies for improving convergence and mixing, sns offers diagnostics and visualization capabilities, as well as a function for sample-based calculation of Bayesian predictive posterior distributions.","PeriodicalId":8446,"journal":{"name":"arXiv: Computation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18637/JSS.V074.C02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

The R package sns implements Stochastic Newton Sampler (SNS), a Metropolis-Hastings Monte Carlo Markov Chain algorithm where the proposal density function is a multivariate Gaussian based on a local, second-order Taylor series expansion of log-density. The mean of the proposal function is the full Newton step in Newton-Raphson optimization algorithm. Taking advantage of the local, multivariate geometry captured in log-density Hessian allows SNS to be more efficient than univariate samplers, approaching independent sampling as the density function increasingly resembles a multivariate Gaussian. SNS requires the log-density Hessian to be negative-definite everywhere in order to construct a valid proposal function. This property holds, or can be easily checked, for many GLM-like models. When initial point is far from density peak, running SNS in non-stochastic mode by taking the Newton step, augmented with with line search, allows the MCMC chain to converge to high-density areas faster. For high-dimensional problems, partitioning of state space into lower-dimensional subsets, and applying SNS to the subsets within a Gibbs sampling framework can significantly improve the mixing of SNS chains. In addition to the above strategies for improving convergence and mixing, sns offers diagnostics and visualization capabilities, as well as a function for sample-based calculation of Bayesian predictive posterior distributions.
随机牛顿采样器:R包sns
R包sns实现了随机牛顿采样器(sns),这是一种Metropolis-Hastings蒙特卡罗马尔可夫链算法,其中建议的密度函数是基于对数密度的局部二阶泰勒级数展开的多元高斯函数。在Newton- raphson优化算法中,建议函数的均值为全牛顿步。利用对数密度Hessian捕获的局部多变量几何,SNS比单变量采样器更有效,随着密度函数越来越像多变量高斯函数,SNS更接近独立采样。为了构造有效的提议函数,SNS要求对数密度Hessian处处为负定。对于许多类似glm的模型来说,这个属性是成立的,或者可以很容易地检验。当初始点远离密度峰值时,采用Newton步进的非随机模式运行SNS,并辅以直线搜索,可以使MCMC链更快地收敛到高密度区域。对于高维问题,将状态空间划分为低维子集,并在Gibbs采样框架内对这些子集应用SNS,可以显著改善SNS链的混合。除了上述改进收敛和混合的策略外,sns还提供诊断和可视化功能,以及基于样本的贝叶斯预测后验分布计算功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信