{"title":"Anticancer Effect of Arbutin on Diethylnitrosamine-Induced Liver Carcinoma in Rats via the GRP and GADD Pathway.","authors":"Xiangting Zeng, Haipeng Liu, Zeping Huang, Peng Dong, Xiao Chen","doi":"10.1615/jenvironpatholtoxicoloncol.2021039772","DOIUrl":null,"url":null,"abstract":"Liver cancer is the third most common cancer, with increasing morbidity and mortality rates worldwide. Despite the increasing occurrence of liver cancer, it has a poor prognosis and potential treatment options are still lacking. The current study aimed to explore the anticancer potential of arbutin against diethylnitrosamine (DEN)-triggered liver carcinogenesis in rats. Liver cancer was initiated in rats via the administration of DEN (200 mg/kg) and then treated with 30 mg/kg of arbutin. Albumin, globulin, and total protein were quantified using kits. Antioxidant, liver injury marker, and tumor biomarker contents were quantified using marker-specific assay kits. The inflammatory markers c-JNK, TRAIL, caspase-8, and p53 contents were also detected using kits. Reverse transcription PCR analysis was used to study the expression of chaperones GRP78, GRP94, and PDIA4 as well as ERDJ4, ATF4, and GADD34. Liver histology was studied microscopically. The arbutin treatment effectively improved body weight and reduced liver weight in animals with DEN-provoked liver cancer. The treatment also improved the albumin, globulin, and total protein contents and antioxidants. In addition, arbutin reduced liver injury marker enzyme function and improved c-JNK, TRAIL, caspase-8, and p53 contents. Arbutin supplementation also decreased the expression of GRP78, PDIA4, GRP94, ERDJ4, ATF4, and GADD34 in the liver tissues of DEN-provoked animals. Arbutin effectively ameliorated the DEN-provoked histological alterations. Altogether, our findings show that arbutin has anti-inflammatory, antioxidant, and anticarcinogenic activities against DEN-provoked liver cancer in rats.","PeriodicalId":94332,"journal":{"name":"Journal of environmental pathology, toxicology and oncology : official organ of the International Society for Environmental Toxicology and Cancer","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of environmental pathology, toxicology and oncology : official organ of the International Society for Environmental Toxicology and Cancer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1615/jenvironpatholtoxicoloncol.2021039772","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Liver cancer is the third most common cancer, with increasing morbidity and mortality rates worldwide. Despite the increasing occurrence of liver cancer, it has a poor prognosis and potential treatment options are still lacking. The current study aimed to explore the anticancer potential of arbutin against diethylnitrosamine (DEN)-triggered liver carcinogenesis in rats. Liver cancer was initiated in rats via the administration of DEN (200 mg/kg) and then treated with 30 mg/kg of arbutin. Albumin, globulin, and total protein were quantified using kits. Antioxidant, liver injury marker, and tumor biomarker contents were quantified using marker-specific assay kits. The inflammatory markers c-JNK, TRAIL, caspase-8, and p53 contents were also detected using kits. Reverse transcription PCR analysis was used to study the expression of chaperones GRP78, GRP94, and PDIA4 as well as ERDJ4, ATF4, and GADD34. Liver histology was studied microscopically. The arbutin treatment effectively improved body weight and reduced liver weight in animals with DEN-provoked liver cancer. The treatment also improved the albumin, globulin, and total protein contents and antioxidants. In addition, arbutin reduced liver injury marker enzyme function and improved c-JNK, TRAIL, caspase-8, and p53 contents. Arbutin supplementation also decreased the expression of GRP78, PDIA4, GRP94, ERDJ4, ATF4, and GADD34 in the liver tissues of DEN-provoked animals. Arbutin effectively ameliorated the DEN-provoked histological alterations. Altogether, our findings show that arbutin has anti-inflammatory, antioxidant, and anticarcinogenic activities against DEN-provoked liver cancer in rats.