Coefficient estimates and Fekete-Szegö inequality for a class of analytic functions satisfying subordinate condition associated with Chebyshev polynomials
{"title":"Coefficient estimates and Fekete-Szegö inequality for a class of analytic functions satisfying subordinate condition associated with Chebyshev polynomials","authors":"Eszter Szatmari, Ş. Altınkaya","doi":"10.2478/ausm-2019-0031","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we define a class of analytic functions, ℱ(ℋ, α, δ, µ), satisfying the following condition (α[ zf′(z)f(z) ]δ+(1-α)[ zf′(z)f(z) ]μ[ 1+zf″(z)f′(z) ]1-μ)≺(z,t), \\left( {\\alpha {{\\left[ {{{{\\rm{zf'}}({\\rm{z}})} \\over {{\\rm{f}}(z)}}} \\right]}^\\delta } + (1 - \\alpha ){{\\left[ {{{{\\rm{zf'}}\\left( {\\rm{z}} \\right)} \\over {{\\rm{f}}(z)}}} \\right]}^\\mu }{{\\left[ {1 + {{{\\rm{zf''}}({\\rm{z}})} \\over {{\\rm{f'}}({\\rm{z}})}}} \\right]}^{1 - \\mu }}} \\right)\\,\\, \\prec \\mathcal{H}({\\rm{z}},{\\rm{t}}), where α ∈ [0, 1], δ ∈ [1, 2] and µ ∈ [0, 1]. We give coefficient estimates and Fekete-Szegö inequality for this class.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ausm-2019-0031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Abstract In this paper, we define a class of analytic functions, ℱ(ℋ, α, δ, µ), satisfying the following condition (α[ zf′(z)f(z) ]δ+(1-α)[ zf′(z)f(z) ]μ[ 1+zf″(z)f′(z) ]1-μ)≺(z,t), \left( {\alpha {{\left[ {{{{\rm{zf'}}({\rm{z}})} \over {{\rm{f}}(z)}}} \right]}^\delta } + (1 - \alpha ){{\left[ {{{{\rm{zf'}}\left( {\rm{z}} \right)} \over {{\rm{f}}(z)}}} \right]}^\mu }{{\left[ {1 + {{{\rm{zf''}}({\rm{z}})} \over {{\rm{f'}}({\rm{z}})}}} \right]}^{1 - \mu }}} \right)\,\, \prec \mathcal{H}({\rm{z}},{\rm{t}}), where α ∈ [0, 1], δ ∈ [1, 2] and µ ∈ [0, 1]. We give coefficient estimates and Fekete-Szegö inequality for this class.