Overcoming the Challenges in Power Scaling Ultrafast Thin-Disk Oscillators: Nonlinearity Management and Thermal Effects

F. Saltarelli, A. Diebold, I. Graumann, C. Phillips, U. Keller
{"title":"Overcoming the Challenges in Power Scaling Ultrafast Thin-Disk Oscillators: Nonlinearity Management and Thermal Effects","authors":"F. Saltarelli, A. Diebold, I. Graumann, C. Phillips, U. Keller","doi":"10.1109/CLEOE-EQEC.2019.8872172","DOIUrl":null,"url":null,"abstract":"Ultrafast high-power laser sources have a crucial role in science and industry. One way to reach performance in the multi-100-W average output power with sub-ps, tens-of-mJ pulses is through thin-disk laser (TDL) oscillators [1]. The oscillator approach to high power, compared to amplifier systems, offers superior beam quality and reduced system complexity but comes at the expense of a challenging nonlinearity management and a high sensitivity to thermal lensing. In particular, the MW-level intracavity peak power leads to a large amount of self-phase modulation (SPM) picked up in the intracavity air. The SPM needs to be compensated with negative group-delay dispersion (GDD) to ensure stable soliton pulse formation. Hence, there is a trade-off in GDD versus pulse energy for TDLs operated in air (\"Standard TDLs\" in Fig. 1a). Dispersive mirrors can provide the required GDD but, due to their resonant structure, they are more subject to thermal effects and damage compared to standard dielectric mirrors. A workaround is to operate the TDL in vacuum (\"Vacuum TDLs\" in Fig. 1a).","PeriodicalId":6714,"journal":{"name":"2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC)","volume":"8 1","pages":"1-1"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CLEOE-EQEC.2019.8872172","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Ultrafast high-power laser sources have a crucial role in science and industry. One way to reach performance in the multi-100-W average output power with sub-ps, tens-of-mJ pulses is through thin-disk laser (TDL) oscillators [1]. The oscillator approach to high power, compared to amplifier systems, offers superior beam quality and reduced system complexity but comes at the expense of a challenging nonlinearity management and a high sensitivity to thermal lensing. In particular, the MW-level intracavity peak power leads to a large amount of self-phase modulation (SPM) picked up in the intracavity air. The SPM needs to be compensated with negative group-delay dispersion (GDD) to ensure stable soliton pulse formation. Hence, there is a trade-off in GDD versus pulse energy for TDLs operated in air ("Standard TDLs" in Fig. 1a). Dispersive mirrors can provide the required GDD but, due to their resonant structure, they are more subject to thermal effects and damage compared to standard dielectric mirrors. A workaround is to operate the TDL in vacuum ("Vacuum TDLs" in Fig. 1a).
克服功率缩放超快薄盘振荡器的挑战:非线性管理和热效应
超快高功率激光源在科学和工业中具有至关重要的作用。一种方法是通过薄板激光器(TDL)振荡器达到100- w的平均输出功率,并具有数十兆焦耳的脉冲[1]。与放大器系统相比,振荡器的高功率方法提供了卓越的光束质量和降低的系统复杂性,但代价是具有挑战性的非线性管理和对热透镜的高灵敏度。特别是,毫瓦级的腔内峰值功率导致腔内空气中出现大量的自相位调制(SPM)。为了保证稳定的孤子脉冲形成,需要对SPM进行负群延迟色散(GDD)补偿。因此,对于在空气中运行的tdl, GDD与脉冲能量之间存在权衡(图1a中的“标准tdl”)。色散镜可以提供所需的GDD,但由于其谐振结构,与标准介电镜相比,色散镜更容易受到热效应和损坏。一种变通方法是在真空中操作TDL(图1a中的“真空TDL”)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信