{"title":"On the order of analysis of speckle images in optical astronomy","authors":"C. Aime","doi":"10.1088/0963-9659/7/5/009","DOIUrl":null,"url":null,"abstract":"We show in this paper that the statistical properties of the speckle image formed at the focus of a large telescope can be fully described by a joint statistical analysis at N different spatial positions, where N is the number of resolution cells in the object's support. To obtain this result, the statistical properties are defined using multifold moment-generating functions (MGFs). Simplifying assumptions (discrete one-dimensional geometry, stationarity) are used to make the mathematical formalism simpler; they make the imaging process similar to a moving average process. General expressions are given for the twofold MGF and for MGFs of higher order. These relations are then used to show that an analysis of order N is exhaustive. It is shown that an MGF of order N + 1 can be written as the product of two MGFs of order N divided by an MGF of order N - 1. Alternatively, it is also shown that the cumulant of order N + 1 is equal to zero. A particular comment is made for the case of the double-star speckle pattern.","PeriodicalId":20787,"journal":{"name":"Pure and Applied Optics: Journal of The European Optical Society Part A","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1998-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pure and Applied Optics: Journal of The European Optical Society Part A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/0963-9659/7/5/009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We show in this paper that the statistical properties of the speckle image formed at the focus of a large telescope can be fully described by a joint statistical analysis at N different spatial positions, where N is the number of resolution cells in the object's support. To obtain this result, the statistical properties are defined using multifold moment-generating functions (MGFs). Simplifying assumptions (discrete one-dimensional geometry, stationarity) are used to make the mathematical formalism simpler; they make the imaging process similar to a moving average process. General expressions are given for the twofold MGF and for MGFs of higher order. These relations are then used to show that an analysis of order N is exhaustive. It is shown that an MGF of order N + 1 can be written as the product of two MGFs of order N divided by an MGF of order N - 1. Alternatively, it is also shown that the cumulant of order N + 1 is equal to zero. A particular comment is made for the case of the double-star speckle pattern.