Self-regularization in turbulence from the Kolmogorov 4/5-law and alignment

T. Drivas
{"title":"Self-regularization in turbulence from the Kolmogorov 4/5-law and alignment","authors":"T. Drivas","doi":"10.1098/rsta.2021.0033","DOIUrl":null,"url":null,"abstract":"A defining feature of three-dimensional hydrodynamic turbulence is that the rate of energy dissipation is bounded away from zero as viscosity is decreased (Reynolds number increased). This phenomenon—anomalous dissipation—is sometimes called the ‘zeroth law of turbulence’ as it underpins many celebrated theoretical predictions. Another robust feature observed in turbulence is that velocity structure functions Sp(ℓ):=⟨|δℓu|p⟩ exhibit persistent power-law scaling in the inertial range, namely Sp(ℓ)∼|ℓ|ζp for exponents ζp>0 over an ever increasing (with Reynolds) range of scales. This behaviour indicates that the velocity field retains some fractional differentiability uniformly in the Reynolds number. The Kolmogorov 1941 theory of turbulence predicts that ζp=p/3 for all p and Onsager’s 1949 theory establishes the requirement that ζp≤p/3 for p≥ 3 for consistency with the zeroth law. Empirically, ζ2⪆2/3 and ζ3⪅1, suggesting that turbulent Navier–Stokes solutions approximate dissipative weak solutions of the Euler equations possessing (nearly) the minimal degree of singularity required to sustain anomalous dissipation. In this note, we adopt an experimentally supported hypothesis on the anti-alignment of velocity increments with their separation vectors and demonstrate that the inertial dissipation provides a regularization mechanism via the Kolmogorov 4/5-law. This article is part of the theme issue ‘Mathematical problems in physical fluid dynamics (part 2)’.","PeriodicalId":20020,"journal":{"name":"Philosophical Transactions of the Royal Society A","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical Transactions of the Royal Society A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1098/rsta.2021.0033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

A defining feature of three-dimensional hydrodynamic turbulence is that the rate of energy dissipation is bounded away from zero as viscosity is decreased (Reynolds number increased). This phenomenon—anomalous dissipation—is sometimes called the ‘zeroth law of turbulence’ as it underpins many celebrated theoretical predictions. Another robust feature observed in turbulence is that velocity structure functions Sp(ℓ):=⟨|δℓu|p⟩ exhibit persistent power-law scaling in the inertial range, namely Sp(ℓ)∼|ℓ|ζp for exponents ζp>0 over an ever increasing (with Reynolds) range of scales. This behaviour indicates that the velocity field retains some fractional differentiability uniformly in the Reynolds number. The Kolmogorov 1941 theory of turbulence predicts that ζp=p/3 for all p and Onsager’s 1949 theory establishes the requirement that ζp≤p/3 for p≥ 3 for consistency with the zeroth law. Empirically, ζ2⪆2/3 and ζ3⪅1, suggesting that turbulent Navier–Stokes solutions approximate dissipative weak solutions of the Euler equations possessing (nearly) the minimal degree of singularity required to sustain anomalous dissipation. In this note, we adopt an experimentally supported hypothesis on the anti-alignment of velocity increments with their separation vectors and demonstrate that the inertial dissipation provides a regularization mechanism via the Kolmogorov 4/5-law. This article is part of the theme issue ‘Mathematical problems in physical fluid dynamics (part 2)’.
湍流中的Kolmogorov 4/5律自正则化及其对准
三维流体动力湍流的一个决定性特征是,随着粘度的降低(雷诺数的增加),能量耗散率有界地远离零。这种反常耗散现象有时被称为“湍流第零定律”,因为它支撑着许多著名的理论预测。在湍流中观察到的另一个鲁棒特征是速度结构函数Sp(r):=⟨|δ ru |p⟩在惯性范围内表现出持续的幂律缩放,即对于指数ζp>0在不断增加的(与雷诺兹)尺度范围内,Sp(r) ~ | r |ζp。这表明速度场在雷诺数上均匀地保持一定分数可微性。Kolmogorov(1941)湍流理论预测,对于所有的p, ζp=p/3;而Onsager(1949)理论建立了对于p≥3,ζp≤p/3的要求,以符合第零定律。经验地,ζ2⪆2/3和ζ3 θ 1,表明湍流Navier-Stokes解近似欧拉方程的耗散弱解,具有维持异常耗散所需的(几乎)最小奇点度。在本文中,我们采用了一个实验支持的关于速度增量与其分离向量的反对准的假设,并通过Kolmogorov 4/5定律证明了惯性耗散提供了一种正则化机制。本文是主题问题“物理流体动力学中的数学问题(第二部分)”的一部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信