{"title":"IndRNN based long-term temporal recognition in the spatial and frequency domain","authors":"Beidi Zhao, Shuai Li, Yanbo Gao","doi":"10.1145/3410530.3414355","DOIUrl":null,"url":null,"abstract":"This paper targets the SHL recognition challenge, which focuses on the location-independent and user-independent activity recognition using smartphone sensors. To address this long-range temporal problem with periodic nature, we propose a new approach (team IndRNN), an Independently Recurrent Neural Network (IndRNN) based long-term temporal activity recognition with spatial and frequency domain features. The data is first segmented into one second sliding windows, then temporal and frequency domain features are extracted as short-term temporal features. A deep IndRNN model is used to predict the unknown test dataset location. Under the predicted location, a deep IndRNN model is further used to classify the 8 activities with best performed features. Finally, transfer learning and model fusion are used to improve the result under the user-independence case. The proposed method achieves 86.94% accuracy on the validation set at the predicted location.","PeriodicalId":7183,"journal":{"name":"Adjunct Proceedings of the 2020 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2020 ACM International Symposium on Wearable Computers","volume":"37 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adjunct Proceedings of the 2020 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2020 ACM International Symposium on Wearable Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3410530.3414355","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15
Abstract
This paper targets the SHL recognition challenge, which focuses on the location-independent and user-independent activity recognition using smartphone sensors. To address this long-range temporal problem with periodic nature, we propose a new approach (team IndRNN), an Independently Recurrent Neural Network (IndRNN) based long-term temporal activity recognition with spatial and frequency domain features. The data is first segmented into one second sliding windows, then temporal and frequency domain features are extracted as short-term temporal features. A deep IndRNN model is used to predict the unknown test dataset location. Under the predicted location, a deep IndRNN model is further used to classify the 8 activities with best performed features. Finally, transfer learning and model fusion are used to improve the result under the user-independence case. The proposed method achieves 86.94% accuracy on the validation set at the predicted location.