Frieze vectors and unitary friezes

IF 0.4 Q4 MATHEMATICS, APPLIED
E. Gunawan, R. Schiffler
{"title":"Frieze vectors and unitary friezes","authors":"E. Gunawan, R. Schiffler","doi":"10.4310/joc.2020.v11.n4.a6","DOIUrl":null,"url":null,"abstract":"Let Q be a quiver without loops and 2-cycles, let A(Q) be the corresponding cluster algebra and let x be a cluster. We introduce a new class of integer vectors which we call frieze vectors relative to x. These frieze vectors are defined as solutions of certain Diophantine equations given by the cluster variables in the cluster algebra. We show that every cluster gives rise to a frieze vector and that the frieze vector determines the cluster. \nWe also study friezes of type Q as homomorphisms from the cluster algebra to an arbitrary integral domain. In particular, we show that every positive integral frieze of affine Dynkin type A is unitary, which means it is obtained by specializing each cluster variable in one cluster to the constant 1. This completes the answer to the question of unitarity for all positive integral friezes of Dynkin and affine Dynkin types.","PeriodicalId":44683,"journal":{"name":"Journal of Combinatorics","volume":"73 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2018-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/joc.2020.v11.n4.a6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 10

Abstract

Let Q be a quiver without loops and 2-cycles, let A(Q) be the corresponding cluster algebra and let x be a cluster. We introduce a new class of integer vectors which we call frieze vectors relative to x. These frieze vectors are defined as solutions of certain Diophantine equations given by the cluster variables in the cluster algebra. We show that every cluster gives rise to a frieze vector and that the frieze vector determines the cluster. We also study friezes of type Q as homomorphisms from the cluster algebra to an arbitrary integral domain. In particular, we show that every positive integral frieze of affine Dynkin type A is unitary, which means it is obtained by specializing each cluster variable in one cluster to the constant 1. This completes the answer to the question of unitarity for all positive integral friezes of Dynkin and affine Dynkin types.
横条向量和酉横条
设Q为无环2环的颤振,设a (Q)为相应的簇代数,设x为簇。我们引入了一类新的整数向量,我们称之为相对于x的frieze向量。这些frieze向量被定义为由聚类代数中的聚类变量给出的某些Diophantine方程的解。我们证明了每个聚类都会产生一个frieze向量,frieze向量决定了聚类。我们还研究了从聚类代数到任意积分域的Q型矩阵的同态。特别地,我们证明了仿射Dynkin型A的每一个正积分frieze是酉的,这意味着它是通过将一个簇中的每个簇变量特化为常数1而得到的。这完成了对Dynkin型和仿射Dynkin型的所有正积分frieze的统一性问题的回答。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Combinatorics
Journal of Combinatorics MATHEMATICS, APPLIED-
自引率
0.00%
发文量
21
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信