Status and prospects for drought forecasting: opportunities in artificial intelligence and hybrid physical–statistical forecasting

O. Mazdiyasni, S. Jiwa, M. M. Kinnon, A. Carlos-Carlos, S. Samuelsen, JE Schubert, A. AghaKouchak, MG Burgess, EM Costigliolo, C. Frieder, BT Saenz, MC Long, J. DeAngelo, K. Alexander, C. Hong, M. Shaner, K. Caldeira, I. McKay, J. Lloyd, EB Olson, L. Liebermann, J. McBride
{"title":"Status and prospects for drought forecasting: opportunities in artificial intelligence and hybrid physical–statistical forecasting","authors":"O. Mazdiyasni, S. Jiwa, M. M. Kinnon, A. Carlos-Carlos, S. Samuelsen, JE Schubert, A. AghaKouchak, MG Burgess, EM Costigliolo, C. Frieder, BT Saenz, MC Long, J. DeAngelo, K. Alexander, C. Hong, M. Shaner, K. Caldeira, I. McKay, J. Lloyd, EB Olson, L. Liebermann, J. McBride","doi":"10.1098/rsta.2021.0288","DOIUrl":null,"url":null,"abstract":"Despite major improvements in weather and climate modelling and substantial increases in remotely sensed observations, drought prediction remains a major challenge. After a review of the existing methods, we discuss major research gaps and opportunities to improve drought prediction. We argue that current approaches are top-down, assuming that the process(es) and/or driver(s) are known—i.e. starting with a model and then imposing it on the observed events (reality). With the help of an experiment, we show that there are opportunities to develop bottom-up drought prediction models—i.e. starting from the reality (here, observed events) and searching for model(s) and driver(s) that work. Recent advances in artificial intelligence and machine learning provide significant opportunities for developing bottom-up drought forecasting models. Regardless of the type of drought forecasting model (e.g. machine learning, dynamical simulations, analogue based), we need to shift our attention to robustness of theories and outputs rather than event-based verification. A shift in our focus towards quantifying the stability of uncertainty in drought prediction models, rather than the goodness of fit or reproducing the past, could be the first step towards this goal. Finally, we highlight the advantages of hybrid dynamical and statistical models for improving current drought prediction models. This article is part of the Royal Society Science+ meeting issue ‘Drought risk in the Anthropocene’.","PeriodicalId":20020,"journal":{"name":"Philosophical Transactions of the Royal Society A","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical Transactions of the Royal Society A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1098/rsta.2021.0288","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

Despite major improvements in weather and climate modelling and substantial increases in remotely sensed observations, drought prediction remains a major challenge. After a review of the existing methods, we discuss major research gaps and opportunities to improve drought prediction. We argue that current approaches are top-down, assuming that the process(es) and/or driver(s) are known—i.e. starting with a model and then imposing it on the observed events (reality). With the help of an experiment, we show that there are opportunities to develop bottom-up drought prediction models—i.e. starting from the reality (here, observed events) and searching for model(s) and driver(s) that work. Recent advances in artificial intelligence and machine learning provide significant opportunities for developing bottom-up drought forecasting models. Regardless of the type of drought forecasting model (e.g. machine learning, dynamical simulations, analogue based), we need to shift our attention to robustness of theories and outputs rather than event-based verification. A shift in our focus towards quantifying the stability of uncertainty in drought prediction models, rather than the goodness of fit or reproducing the past, could be the first step towards this goal. Finally, we highlight the advantages of hybrid dynamical and statistical models for improving current drought prediction models. This article is part of the Royal Society Science+ meeting issue ‘Drought risk in the Anthropocene’.
干旱预测的现状与展望:人工智能和物理统计混合预测的机遇
尽管天气和气候模拟有了重大改进,遥感观测也有了大量增加,但干旱预测仍然是一项重大挑战。在对现有方法的回顾之后,我们讨论了改进干旱预测的主要研究差距和机会。我们认为当前的方法是自顶向下的,假设过程和/或驱动因素是已知的。从一个模型开始,然后将其强加于观察到的事件(现实)。在实验的帮助下,我们表明有机会开发自下而上的干旱预测模型,即:从现实(这里是观察到的事件)出发,并搜索能够工作的模型和驱动程序。人工智能和机器学习的最新进展为开发自下而上的干旱预测模型提供了重要的机会。无论何种干旱预测模型(如机器学习、动态模拟、基于模拟),我们都需要将注意力转移到理论和输出的鲁棒性上,而不是基于事件的验证。我们将重点转向对干旱预测模型不确定性的稳定性进行量化,而不是拟合优度或重现过去,这可能是实现这一目标的第一步。最后,强调了动态和统计混合模型在改进现有干旱预测模型方面的优势。这篇文章是皇家学会科学+会议议题“人类世的干旱风险”的一部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信