On the growth of Sobolev norms for a class of linear Schrödinger equations on the torus with superlinear dispersion

Asymptot. Anal. Pub Date : 2017-06-29 DOI:10.3233/ASY-181470
Riccardo Montalto
{"title":"On the growth of Sobolev norms for a class of linear Schrödinger equations on the torus with superlinear dispersion","authors":"Riccardo Montalto","doi":"10.3233/ASY-181470","DOIUrl":null,"url":null,"abstract":"In this paper we consider time dependent Schrodinger equations on the one-dimensional torus $\\T := \\R /(2 \\pi \\Z)$ of the form $\\partial_t u = \\ii {\\cal V}(t)[u]$ where ${\\cal V}(t)$ is a time dependent, self-adjoint pseudo-differential operator of the form ${\\cal V}(t) = V(t, x) |D|^M + {\\cal W}(t)$, $M > 1$, $|D| := \\sqrt{- \\partial_{xx}}$, $V$ is a smooth function uniformly bounded from below and ${\\cal W}$ is a time-dependent pseudo-differential operator of order strictly smaller than $M$. We prove that the solutions of the Schrodinger equation $\\partial_t u = \\ii {\\cal V}(t)[u]$ grow at most as $t^\\e$, $t \\to + \\infty$ for any $\\e > 0$. The proof is based on a reduction to constant coefficients up to smoothing remainders of the vector field $\\ii {\\cal V}(t)$ which uses Egorov type theorems and pseudo-differential calculus.","PeriodicalId":8603,"journal":{"name":"Asymptot. Anal.","volume":"64 1","pages":"85-114"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asymptot. Anal.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/ASY-181470","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

In this paper we consider time dependent Schrodinger equations on the one-dimensional torus $\T := \R /(2 \pi \Z)$ of the form $\partial_t u = \ii {\cal V}(t)[u]$ where ${\cal V}(t)$ is a time dependent, self-adjoint pseudo-differential operator of the form ${\cal V}(t) = V(t, x) |D|^M + {\cal W}(t)$, $M > 1$, $|D| := \sqrt{- \partial_{xx}}$, $V$ is a smooth function uniformly bounded from below and ${\cal W}$ is a time-dependent pseudo-differential operator of order strictly smaller than $M$. We prove that the solutions of the Schrodinger equation $\partial_t u = \ii {\cal V}(t)[u]$ grow at most as $t^\e$, $t \to + \infty$ for any $\e > 0$. The proof is based on a reduction to constant coefficients up to smoothing remainders of the vector field $\ii {\cal V}(t)$ which uses Egorov type theorems and pseudo-differential calculus.
一类超线性色散环面上线性Schrödinger方程的Sobolev范数的增长
本文考虑一维环面上的时变薛定谔方程 $\T := \R /(2 \pi \Z)$ 形式的 $\partial_t u = \ii {\cal V}(t)[u]$ 在哪里 ${\cal V}(t)$ 一个时间相关的,自伴随的伪微分算子是这样的形式吗 ${\cal V}(t) = V(t, x) |D|^M + {\cal W}(t)$, $M > 1$, $|D| := \sqrt{- \partial_{xx}}$, $V$ 光滑函数从下到上有界吗 ${\cal W}$ 一个时间相关的伪微分算子的阶是否严格小于 $M$. 我们证明了薛定谔方程的解 $\partial_t u = \ii {\cal V}(t)[u]$ 最多成长为 $t^\e$, $t \to + \infty$ 对于任何 $\e > 0$. 证明是基于对常数系数的简化,直到平滑向量场的余数 $\ii {\cal V}(t)$ 它使用了Egorov型定理和伪微分学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信