Discriminating Toxicant Classes by Mode of Action: 2. Physico‐Chemical Descriptors

M. Nendza, Martin Müller
{"title":"Discriminating Toxicant Classes by Mode of Action: 2. Physico‐Chemical Descriptors","authors":"M. Nendza, Martin Müller","doi":"10.1002/1521-3838(200012)19:6<581::AID-QSAR581>3.0.CO;2-A","DOIUrl":null,"url":null,"abstract":"Environmental contaminants with common mode of toxic action (MOA) are generally expected to have similar structures and/or physico-chemical properties. Calculated descriptors of lipophilic, electronic and steric properties were used to cluster 115 test chemicals by MOA into nine different toxicant classes (non-polar non-specific toxicants, polar non-specific toxicants, uncouplers of oxidative phosphorylation, inhibitors of photosynthesis, inhibitors of acetylcholinesterase, inhibitors of respiration, thiol-alkylating agents, reactives (irritants), estrogenic compounds). Stepwise discriminant analysis of the test chemicals resulted in 89.6% correct classifications into the MOA classes. The final model uses 10 significant variables (log KOW, eHOMO, V+, QAV, HMAX+, MR, MW, DEFF, SASA, SAVOL). PLS discriminant analysis of the same data set resulted in a three-component model with r=0.89; the variables with the highest discriminatory power are log KOW, HMAX+, DEFF and QAV. Each MOA class reveals a characteristic profile in physico-chemical properties. Deviations relative to non-specific baseline toxicants are specific for each MOA class and reflect the structural dependences of the rate-limiting interactions that are causing the respective toxicities (functional similarity). By combining physiological and chemical knowledge about underlying processes, it is possible to indicate descriptor-based discrimination criteria by MOA as an essential prerequisite for rational selection and application of process-related QSARS for predictive purposes.","PeriodicalId":20818,"journal":{"name":"Quantitative Structure-activity Relationships","volume":"33 1","pages":"581-598"},"PeriodicalIF":0.0000,"publicationDate":"2000-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"47","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantitative Structure-activity Relationships","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/1521-3838(200012)19:6<581::AID-QSAR581>3.0.CO;2-A","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 47

Abstract

Environmental contaminants with common mode of toxic action (MOA) are generally expected to have similar structures and/or physico-chemical properties. Calculated descriptors of lipophilic, electronic and steric properties were used to cluster 115 test chemicals by MOA into nine different toxicant classes (non-polar non-specific toxicants, polar non-specific toxicants, uncouplers of oxidative phosphorylation, inhibitors of photosynthesis, inhibitors of acetylcholinesterase, inhibitors of respiration, thiol-alkylating agents, reactives (irritants), estrogenic compounds). Stepwise discriminant analysis of the test chemicals resulted in 89.6% correct classifications into the MOA classes. The final model uses 10 significant variables (log KOW, eHOMO, V+, QAV, HMAX+, MR, MW, DEFF, SASA, SAVOL). PLS discriminant analysis of the same data set resulted in a three-component model with r=0.89; the variables with the highest discriminatory power are log KOW, HMAX+, DEFF and QAV. Each MOA class reveals a characteristic profile in physico-chemical properties. Deviations relative to non-specific baseline toxicants are specific for each MOA class and reflect the structural dependences of the rate-limiting interactions that are causing the respective toxicities (functional similarity). By combining physiological and chemical knowledge about underlying processes, it is possible to indicate descriptor-based discrimination criteria by MOA as an essential prerequisite for rational selection and application of process-related QSARS for predictive purposes.
根据作用方式区分毒物类别:地理物理化学描述符
具有共同毒性作用模式(MOA)的环境污染物通常具有相似的结构和/或物理化学性质。通过MOA计算出的亲脂性、电子性和位阻性描述符,将115种测试化学品归类为9种不同的毒物类别(非极性非特异性毒物、极性非特异性毒物、氧化磷酸化解偶联剂、光合作用抑制剂、乙酰胆碱酯酶抑制剂、呼吸抑制剂、硫醇烷基化剂、反应性(刺激物)、雌激素化合物)。逐步判别分析的结果表明,89.6%的测试化学品被正确分类为MOA类。最终模型使用10个显著变量(log KOW, eHOMO, V+, QAV, HMAX+, MR, MW, DEFF, SASA, SAVOL)。同一数据集的PLS判别分析结果为三成分模型,r=0.89;区分力最大的变量是log KOW、HMAX+、DEFF和QAV。每个MOA类都显示出其物理化学性质的特征。相对于非特异性基线毒物的偏差对于每一类MOA都是特定的,反映了导致各自毒性的限速相互作用的结构依赖性(功能相似性)。通过结合对潜在过程的生理和化学知识,MOA有可能指出基于描述符的区分标准,作为合理选择和应用过程相关QSARS的必要前提。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信