{"title":"Nanoscale Light Sources for Optical Interconnects","authors":"N. Li, K. Han, Sorger, D. Sadana","doi":"10.4172/2469-410X.1000E114","DOIUrl":null,"url":null,"abstract":"This editorial is aimed at addressing two key aspects of nanoscale light sources: (1) low-power optical communication and (2) crystallographic defect engineering for monolithic integration with silicon. We will further discuss opportunities and challenges for nanoscale light sources for next generation, high density optical interconnect. Designing and prototyping light sources with sub light wavelength dimensions has been the topic of keen interest because of their versatility in optical communication. For example, nano light sources can operate at hundreds of GHz [1,2] which is not possible with conventional light sources [3]. In addition, power consumption in interconnects with these light sources can be reduced by omitting the modulator and using direct source modulation to encode optical data [4]. There are a number of nano light sources under investigation: (i) small photonic mode laser [5-9], (ii) plasmonic lasers [10,11] (iii) photonic-plasmonic hybrid lasers [12-15] and (iv) nanoscale LEDs [16,17]. Pros and cons of these nano light sources are discussed below.","PeriodicalId":92245,"journal":{"name":"Journal of lasers, optics & photonics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of lasers, optics & photonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2469-410X.1000E114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
This editorial is aimed at addressing two key aspects of nanoscale light sources: (1) low-power optical communication and (2) crystallographic defect engineering for monolithic integration with silicon. We will further discuss opportunities and challenges for nanoscale light sources for next generation, high density optical interconnect. Designing and prototyping light sources with sub light wavelength dimensions has been the topic of keen interest because of their versatility in optical communication. For example, nano light sources can operate at hundreds of GHz [1,2] which is not possible with conventional light sources [3]. In addition, power consumption in interconnects with these light sources can be reduced by omitting the modulator and using direct source modulation to encode optical data [4]. There are a number of nano light sources under investigation: (i) small photonic mode laser [5-9], (ii) plasmonic lasers [10,11] (iii) photonic-plasmonic hybrid lasers [12-15] and (iv) nanoscale LEDs [16,17]. Pros and cons of these nano light sources are discussed below.