Theoretical Analysis of a Non-Quantized Square-Root Topological Insulator using Photonic Aharonov-Bohm Cages

M. Kremer, Ioannis Petrides, Eric Meyer, M. Heinrich, O. Zilberberg, A. Szameit
{"title":"Theoretical Analysis of a Non-Quantized Square-Root Topological Insulator using Photonic Aharonov-Bohm Cages","authors":"M. Kremer, Ioannis Petrides, Eric Meyer, M. Heinrich, O. Zilberberg, A. Szameit","doi":"10.1109/CLEOE-EQEC.2019.8872316","DOIUrl":null,"url":null,"abstract":"Topological insulators have to date seen a variety of manifestations. All available realizations of topological insulators, however, share a common feature: their spectral bands are attributed with a nonlocal topological index that is quantized. In this work, we report a new type of insulator exhibiting spectral bands with nonquantized indices, yet robust boundary states. We provide a theoretical analysis based on the quantization of the indices in the corresponding system where the square of the Hamiltonian is taken and exemplify the general paradigm using photonic Aharonov-Bohm cages.","PeriodicalId":6714,"journal":{"name":"2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC)","volume":"8 1","pages":"1-1"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CLEOE-EQEC.2019.8872316","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Topological insulators have to date seen a variety of manifestations. All available realizations of topological insulators, however, share a common feature: their spectral bands are attributed with a nonlocal topological index that is quantized. In this work, we report a new type of insulator exhibiting spectral bands with nonquantized indices, yet robust boundary states. We provide a theoretical analysis based on the quantization of the indices in the corresponding system where the square of the Hamiltonian is taken and exemplify the general paradigm using photonic Aharonov-Bohm cages.
光子Aharonov-Bohm笼非量子化平方根拓扑绝缘子的理论分析
迄今为止,拓扑绝缘体的表现形式多种多样。然而,所有可用的拓扑绝缘体实现都有一个共同的特征:它们的光谱带都具有量子化的非局部拓扑指数。在这项工作中,我们报告了一种新型绝缘子,它具有非量子化指标的谱带,但具有鲁棒的边界态。我们基于相应系统中哈密顿量的平方的指标的量子化进行了理论分析,并用光子Aharonov-Bohm笼举例说明了一般范例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信