{"title":"A generalized antiplane singularity within a semi-infinite wedgeof arbitrary angle","authors":"Lifeng Ma, Yifeng Chen, D. Hills","doi":"10.1177/03093247231190684","DOIUrl":null,"url":null,"abstract":"The state of stress arising within an elastic wedge generated by an antiplane singularity present within it is studied. An analytical solution is derived with a unified generic approach. The singularity may represent either an anti-plane concentrated force or a screw dislocation. To validate the general solution, two degenerate cases are presented. Further, the image force present on the screw dislocation due to the wedge free boundary is obtained. It is found that when the screw dislocations are placed in the vicinity of the wedge surface, the image force will drive dislocations to the free boundary where they will be annihilated. This implies that a dislocation-free zone may exist along the free surface of the wedge. To demonstrate the application of the fundamental solutions, a formulation for a slip band under anti-plane loading with Green’s function method is provided. The solutions developed in this study may be used as building blocks to model the damage of material near a V-notch under versatile anti-plane load conditions or torsional loading.","PeriodicalId":50038,"journal":{"name":"Journal of Strain Analysis for Engineering Design","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Strain Analysis for Engineering Design","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/03093247231190684","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The state of stress arising within an elastic wedge generated by an antiplane singularity present within it is studied. An analytical solution is derived with a unified generic approach. The singularity may represent either an anti-plane concentrated force or a screw dislocation. To validate the general solution, two degenerate cases are presented. Further, the image force present on the screw dislocation due to the wedge free boundary is obtained. It is found that when the screw dislocations are placed in the vicinity of the wedge surface, the image force will drive dislocations to the free boundary where they will be annihilated. This implies that a dislocation-free zone may exist along the free surface of the wedge. To demonstrate the application of the fundamental solutions, a formulation for a slip band under anti-plane loading with Green’s function method is provided. The solutions developed in this study may be used as building blocks to model the damage of material near a V-notch under versatile anti-plane load conditions or torsional loading.
期刊介绍:
The Journal of Strain Analysis for Engineering Design provides a forum for work relating to the measurement and analysis of strain that is appropriate to engineering design and practice.
"Since launching in 1965, The Journal of Strain Analysis has been a collegiate effort, dedicated to providing exemplary service to our authors. We welcome contributions related to analytical, experimental, and numerical techniques for the analysis and/or measurement of stress and/or strain, or studies of relevant material properties and failure modes. Our international Editorial Board contains experts in all of these fields and is keen to encourage papers on novel techniques and innovative applications." Professor Eann Patterson - University of Liverpool, UK
This journal is a member of the Committee on Publication Ethics (COPE).