S. Lobov, R. Kasai, K. Ohtani, O. Tanaka, K. Yamasaki
{"title":"Enzymic Production of Sweet Stevioside Derivatives : Transglucosylation by Glucosidases(Organic Chemistry)","authors":"S. Lobov, R. Kasai, K. Ohtani, O. Tanaka, K. Yamasaki","doi":"10.1080/00021369.1991.10857912","DOIUrl":null,"url":null,"abstract":"For the purpose of improving sweetness and a further study on the structure-sweetness relationship of steviol glycosides, transglycosylation of stevioside by a variety of commercial glucosidases was investigated. It was revealed that two α-glucosidases gave glucosylated products. Transglucosylation of stevioside by Pullulanase and pullulan exclusively afforded three products, 13-O-[β-maltotriosyl-(1 → 2)-β-d-glucosyl]-19-O-β-d-glucosyl-steviol (1), 13-O-[β-maltosyl-(1 → 2)-β-d-glucosyl]-19-O-β-d-glucosyl-steviol (2) and 13-O-β-sophorosyl-19-O-β-maltotriosyl-steviol (3). All of these products have already been obtained by trans-α-1,4-glucosylation of stevioside by the cyclodextrin glucano-transferase starch system, and 1 and 2 have been proven to be tasty and potent sweeteners. Transglucosylation of stevioside by Biozyme L and maltose afforded three new products, 4, 5 and 6, the structures of these compounds being elucidated as 13-O-β-sophorosyl-19-O-β-isomaltosyl-steviol (4), 13-O-β-isomaltosyl(l → 2)-β-d...","PeriodicalId":7729,"journal":{"name":"Agricultural and biological chemistry","volume":"25 1","pages":"2959-2965"},"PeriodicalIF":0.0000,"publicationDate":"1991-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agricultural and biological chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/00021369.1991.10857912","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17
Abstract
For the purpose of improving sweetness and a further study on the structure-sweetness relationship of steviol glycosides, transglycosylation of stevioside by a variety of commercial glucosidases was investigated. It was revealed that two α-glucosidases gave glucosylated products. Transglucosylation of stevioside by Pullulanase and pullulan exclusively afforded three products, 13-O-[β-maltotriosyl-(1 → 2)-β-d-glucosyl]-19-O-β-d-glucosyl-steviol (1), 13-O-[β-maltosyl-(1 → 2)-β-d-glucosyl]-19-O-β-d-glucosyl-steviol (2) and 13-O-β-sophorosyl-19-O-β-maltotriosyl-steviol (3). All of these products have already been obtained by trans-α-1,4-glucosylation of stevioside by the cyclodextrin glucano-transferase starch system, and 1 and 2 have been proven to be tasty and potent sweeteners. Transglucosylation of stevioside by Biozyme L and maltose afforded three new products, 4, 5 and 6, the structures of these compounds being elucidated as 13-O-β-sophorosyl-19-O-β-isomaltosyl-steviol (4), 13-O-β-isomaltosyl(l → 2)-β-d...