Sharp Bounds of Kulli–Basava Indices in Generalized Form for k-Generalized Quasi Trees

IF 0.7 Q2 MATHEMATICS
Sheeba Afridi, Muhammad Yasin Khan, G. Ali, Murtaza Ali, Irfan Nurhidayat, M. A. Arefin
{"title":"Sharp Bounds of Kulli–Basava Indices in Generalized Form for k-Generalized Quasi Trees","authors":"Sheeba Afridi, Muhammad Yasin Khan, G. Ali, Murtaza Ali, Irfan Nurhidayat, M. A. Arefin","doi":"10.1155/2023/7567411","DOIUrl":null,"url":null,"abstract":"<jats:p>Molecular descriptors are a basic tool in the spectral graph, molecular chemistry, and various other fields of mathematics and chemistry. Kulli–Basava <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M1\">\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mi mathvariant=\"double-struck\">K</mi>\n <mi mathvariant=\"fraktur\">B</mi>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula> indices were initiated for chemical applications of various substances in chemistry. For simple graph <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M2\">\n <mi>G</mi>\n </math>\n </jats:inline-formula>, <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M3\">\n <mi mathvariant=\"double-struck\">K</mi>\n <mi mathvariant=\"fraktur\">B</mi>\n </math>\n </jats:inline-formula> indices in generalized forms are <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M4\">\n <mi mathvariant=\"double-struck\">K</mi>\n <msubsup>\n <mrow>\n <mi mathvariant=\"fraktur\">B</mi>\n </mrow>\n <mrow>\n <mn>1</mn>\n </mrow>\n <mrow>\n <mi mathvariant=\"normal\">ϱ</mi>\n </mrow>\n </msubsup>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mi>G</mi>\n </mrow>\n </mfenced>\n <mo>=</mo>\n <mrow>\n <msub>\n <mrow>\n <mstyle displaystyle=\"true\">\n <mo stretchy=\"false\">∑</mo>\n </mstyle>\n </mrow>\n <mrow>\n <mi>g</mi>\n <mi>h</mi>\n <mo>∈</mo>\n <mi>E</mi>\n <mrow>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mi>G</mi>\n </mrow>\n </mfenced>\n </mrow>\n </mrow>\n </msub>\n <msup>\n <mrow>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <msub>\n <mrow>\n <mi mathvariant=\"double-struck\">S</mi>\n </mrow>\n <mrow>\n <mi>e</mi>\n </mrow>\n </msub>\n <mrow>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mi>g</mi>\n </mrow>\n </mfenced>\n </mrow>\n <mo>+</mo>\n <msub>\n <mrow>\n <mi mathvariant=\"double-struck\">S</mi>\n </mrow>\n <mrow>\n <mi>e</mi>\n </mrow>\n </msub>\n <mrow>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mi>h</mi>\n </mrow>\n </mfenced>\n </mrow>\n </mrow>\n </mfenced>\n </mrow>\n <mrow>\n <mi mathvariant=\"normal\">ϱ</mi>\n </mrow>\n </msup>\n </mrow>\n </math>\n </jats:inline-formula> and <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M5\">\n <mi mathvariant=\"double-struck\">K</mi>\n <msubsup>\n <mrow>\n <mi mathvariant=\"fraktur\">B</mi>\n </mrow>\n <mrow>\n <mn>2</mn>\n </mrow>\n <mrow>\n <mi mathvariant=\"normal\">ϱ</mi>\n </mrow>\n </msubsup>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mi>G</mi>\n </mrow>\n </mfenced>\n <mo>=</mo>\n <mrow>\n <msub>\n <mrow>\n <mstyle displaystyle=\"true\">\n <mo stretchy=\"false\">∑</mo>\n </mstyle>\n </mrow>\n <mrow>\n <mi>g</mi>\n <mi>h</mi>\n <mo>∈</mo>\n <mi>E</mi>\n <mrow>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mi>G</mi>\n </mrow>\n </mfenced>\n </mrow>\n </mrow>\n </msub>\n <msup>\n <mrow>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <msub>\n <mrow>\n <mi mathvariant=\"double-struck\">S</mi>\n </mrow>\n <mrow>\n <mi>e</mi>\n </mrow>\n </msub>\n <mrow>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mi>g</mi>\n </mrow>\n </mfenced>\n </mrow>\n <mo>.</mo>\n <msub>\n <mrow>\n <mi mathvariant=\"double-struck\">S</mi>\n </mrow>\n <mrow>\n <mi>e</mi>\n </mrow>\n </msub>\n <mrow>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mi>h</mi>\n </mrow>\n </mfenced>\n </mrow>\n </mrow>\n </mfenced>\n </mrow>\n <mrow>\n <mi mathvariant=\"normal\">ϱ</mi>\n </mrow>\n </msup>\n </mrow>\n </math>\n </jats:inline-formula>, where <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M6\">\n <msub>\n <mrow>\n <mi mathvariant=\"double-struck\">S</mi>\n </mrow>\n <mrow>\n <mi>e</mi>\n </mrow>\n </msub>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n ","PeriodicalId":43667,"journal":{"name":"Muenster Journal of Mathematics","volume":"9 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Muenster Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/7567411","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Molecular descriptors are a basic tool in the spectral graph, molecular chemistry, and various other fields of mathematics and chemistry. Kulli–Basava K B indices were initiated for chemical applications of various substances in chemistry. For simple graph G , K B indices in generalized forms are K B 1 ϱ G = g h E G S e g + S e h ϱ and K B 2 ϱ G = g h E G S e g . S e h ϱ , where S e
k-广义拟树广义形式Kulli-Basava指数的锐界
分子描述符是光谱图、分子化学以及其他数学和化学领域的基本工具。Kulli-Basava K - B指数在化学中应用于各种物质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信