Sheeba Afridi, Muhammad Yasin Khan, G. Ali, Murtaza Ali, Irfan Nurhidayat, M. A. Arefin
{"title":"Sharp Bounds of Kulli–Basava Indices in Generalized Form for k-Generalized Quasi Trees","authors":"Sheeba Afridi, Muhammad Yasin Khan, G. Ali, Murtaza Ali, Irfan Nurhidayat, M. A. Arefin","doi":"10.1155/2023/7567411","DOIUrl":null,"url":null,"abstract":"<jats:p>Molecular descriptors are a basic tool in the spectral graph, molecular chemistry, and various other fields of mathematics and chemistry. Kulli–Basava <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M1\">\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mi mathvariant=\"double-struck\">K</mi>\n <mi mathvariant=\"fraktur\">B</mi>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula> indices were initiated for chemical applications of various substances in chemistry. For simple graph <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M2\">\n <mi>G</mi>\n </math>\n </jats:inline-formula>, <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M3\">\n <mi mathvariant=\"double-struck\">K</mi>\n <mi mathvariant=\"fraktur\">B</mi>\n </math>\n </jats:inline-formula> indices in generalized forms are <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M4\">\n <mi mathvariant=\"double-struck\">K</mi>\n <msubsup>\n <mrow>\n <mi mathvariant=\"fraktur\">B</mi>\n </mrow>\n <mrow>\n <mn>1</mn>\n </mrow>\n <mrow>\n <mi mathvariant=\"normal\">ϱ</mi>\n </mrow>\n </msubsup>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mi>G</mi>\n </mrow>\n </mfenced>\n <mo>=</mo>\n <mrow>\n <msub>\n <mrow>\n <mstyle displaystyle=\"true\">\n <mo stretchy=\"false\">∑</mo>\n </mstyle>\n </mrow>\n <mrow>\n <mi>g</mi>\n <mi>h</mi>\n <mo>∈</mo>\n <mi>E</mi>\n <mrow>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mi>G</mi>\n </mrow>\n </mfenced>\n </mrow>\n </mrow>\n </msub>\n <msup>\n <mrow>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <msub>\n <mrow>\n <mi mathvariant=\"double-struck\">S</mi>\n </mrow>\n <mrow>\n <mi>e</mi>\n </mrow>\n </msub>\n <mrow>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mi>g</mi>\n </mrow>\n </mfenced>\n </mrow>\n <mo>+</mo>\n <msub>\n <mrow>\n <mi mathvariant=\"double-struck\">S</mi>\n </mrow>\n <mrow>\n <mi>e</mi>\n </mrow>\n </msub>\n <mrow>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mi>h</mi>\n </mrow>\n </mfenced>\n </mrow>\n </mrow>\n </mfenced>\n </mrow>\n <mrow>\n <mi mathvariant=\"normal\">ϱ</mi>\n </mrow>\n </msup>\n </mrow>\n </math>\n </jats:inline-formula> and <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M5\">\n <mi mathvariant=\"double-struck\">K</mi>\n <msubsup>\n <mrow>\n <mi mathvariant=\"fraktur\">B</mi>\n </mrow>\n <mrow>\n <mn>2</mn>\n </mrow>\n <mrow>\n <mi mathvariant=\"normal\">ϱ</mi>\n </mrow>\n </msubsup>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mi>G</mi>\n </mrow>\n </mfenced>\n <mo>=</mo>\n <mrow>\n <msub>\n <mrow>\n <mstyle displaystyle=\"true\">\n <mo stretchy=\"false\">∑</mo>\n </mstyle>\n </mrow>\n <mrow>\n <mi>g</mi>\n <mi>h</mi>\n <mo>∈</mo>\n <mi>E</mi>\n <mrow>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mi>G</mi>\n </mrow>\n </mfenced>\n </mrow>\n </mrow>\n </msub>\n <msup>\n <mrow>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <msub>\n <mrow>\n <mi mathvariant=\"double-struck\">S</mi>\n </mrow>\n <mrow>\n <mi>e</mi>\n </mrow>\n </msub>\n <mrow>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mi>g</mi>\n </mrow>\n </mfenced>\n </mrow>\n <mo>.</mo>\n <msub>\n <mrow>\n <mi mathvariant=\"double-struck\">S</mi>\n </mrow>\n <mrow>\n <mi>e</mi>\n </mrow>\n </msub>\n <mrow>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mi>h</mi>\n </mrow>\n </mfenced>\n </mrow>\n </mrow>\n </mfenced>\n </mrow>\n <mrow>\n <mi mathvariant=\"normal\">ϱ</mi>\n </mrow>\n </msup>\n </mrow>\n </math>\n </jats:inline-formula>, where <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M6\">\n <msub>\n <mrow>\n <mi mathvariant=\"double-struck\">S</mi>\n </mrow>\n <mrow>\n <mi>e</mi>\n </mrow>\n </msub>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n ","PeriodicalId":43667,"journal":{"name":"Muenster Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Muenster Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/7567411","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Molecular descriptors are a basic tool in the spectral graph, molecular chemistry, and various other fields of mathematics and chemistry. Kulli–Basava indices were initiated for chemical applications of various substances in chemistry. For simple graph , indices in generalized forms are and , where