{"title":"A Fluid-Diffusion-Hybrid Limiting Approximation for Priority Systems with Fast and Slow Customers","authors":"Lun Yu, S. Iravani, Ohad Perry","doi":"10.1287/opre.2021.2154","DOIUrl":null,"url":null,"abstract":"The paper “Fluid-Diffusion-Hybrid (FDH) Approximation” proposes a new heavy-traffic asymptotic regime for a two-class priority system in which the high-priority customers require substantially larger service times than the low-priority customers. In the FDH limit, the high-priority queue is a diffusion, whereas the low-priority queue operates as a (random) fluid limit, whose dynamics are driven by the former diffusion. A characterizing property of our limit process is that, unlike other asymptotic regimes, a non-negligible proportion of the customers from both classes must wait for service. This property allows us to study the costs and benefits of de-pooling, and prove that a two-pool system is often the asymptotically optimal design of the system.","PeriodicalId":19546,"journal":{"name":"Oper. Res.","volume":"2 1","pages":"2579-2596"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oper. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1287/opre.2021.2154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
The paper “Fluid-Diffusion-Hybrid (FDH) Approximation” proposes a new heavy-traffic asymptotic regime for a two-class priority system in which the high-priority customers require substantially larger service times than the low-priority customers. In the FDH limit, the high-priority queue is a diffusion, whereas the low-priority queue operates as a (random) fluid limit, whose dynamics are driven by the former diffusion. A characterizing property of our limit process is that, unlike other asymptotic regimes, a non-negligible proportion of the customers from both classes must wait for service. This property allows us to study the costs and benefits of de-pooling, and prove that a two-pool system is often the asymptotically optimal design of the system.