Integral bases of pure fields with square-free parameter

IF 0.4 4区 数学 Q4 MATHEMATICS
László Remete
{"title":"Integral bases of pure fields with square-free parameter","authors":"László Remete","doi":"10.1556/012.2020.57.1.1450","DOIUrl":null,"url":null,"abstract":"\n Let m ≠ 0, ±1 and n ≥ 2 be integers. The ring of algebraic integers of the pure fields of type is explicitly known for n = 2, 3,4. It is well known that for n = 2, an integral basis of the pure quadratic fields can be given parametrically, by using the remainder of the square-free part of m modulo 4. Such characterisation of an integral basis also exists for cubic and quartic pure fields, but for higher degree pure fields there are only results for special cases.\n In this paper we explicitly give an integral basis of the field , where m ≠ ±1 is square-free. Furthermore, we show that similarly to the quadratic case, an integral basis of is repeating periodically in m with period length depending on n.","PeriodicalId":51187,"journal":{"name":"Studia Scientiarum Mathematicarum Hungarica","volume":"28 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studia Scientiarum Mathematicarum Hungarica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1556/012.2020.57.1.1450","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

Let m ≠ 0, ±1 and n ≥ 2 be integers. The ring of algebraic integers of the pure fields of type is explicitly known for n = 2, 3,4. It is well known that for n = 2, an integral basis of the pure quadratic fields can be given parametrically, by using the remainder of the square-free part of m modulo 4. Such characterisation of an integral basis also exists for cubic and quartic pure fields, but for higher degree pure fields there are only results for special cases. In this paper we explicitly give an integral basis of the field , where m ≠ ±1 is square-free. Furthermore, we show that similarly to the quadratic case, an integral basis of is repeating periodically in m with period length depending on n.
无平方参数纯场的积分基
设m≠0,±1,n≥2为整数。类型纯域的代数整数环在n = 2,3,4时显式已知。众所周知,当n = 2时,利用m模4的无平方部分的余数,可以参数化地给出纯二次域的积分基。对于三次纯场和四次纯场,积分基的这种表征也存在,但对于高次纯场,只有在特殊情况下才有结果。本文给出了m≠±1为无平方场的一个积分基。进一步,我们证明了类似于二次情形,的一个积分基在m中周期性重复,周期长度取决于n。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
19
审稿时长
>12 weeks
期刊介绍: The journal publishes original research papers on various fields of mathematics, e.g., algebra, algebraic geometry, analysis, combinatorics, dynamical systems, geometry, mathematical logic, mathematical statistics, number theory, probability theory, set theory, statistical physics and topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信