{"title":"Review on Chronic Exposure of Acrylamide Causes a Neurotoxicity Risk","authors":"N. Maddu, S. F. Begum","doi":"10.26689/ITPS.V1I1.416","DOIUrl":null,"url":null,"abstract":"The exposure and inhalation of acrylamide (ACR) are not safe to the human health leading to the potential neurotoxicity. ACR is widely used in biochemical techniques and highly occurs in processing foods such as potato chips prepared at high temperatures. ACR is formed from reducing sugars and asparagine through the Maillard reaction. It exerts various harmful and toxic effects such as neurotoxicity both in humans and animal studies. The extensive damage of synaptic proteins, the formation of ACR-DNA adducts, degeneration of motor neurons, neurofilament reduction, are the most common neurological symptoms. The main metabolite of ACR metabolism is glycidamide, and it causes harmful effects as same as ACR. The main purpose of this study is to analyze the neurotoxic effects of ACR on various regions of the brain and its different mechanistic pathways that are involved in ACR neurotoxicity. The consumption of ACR-containing foods and its exposure are reduced by the human, leading to the reduction of toxic effects associated with ACR.","PeriodicalId":13673,"journal":{"name":"INNOSC Theranostics and Pharmacological Sciences","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"INNOSC Theranostics and Pharmacological Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26689/ITPS.V1I1.416","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
The exposure and inhalation of acrylamide (ACR) are not safe to the human health leading to the potential neurotoxicity. ACR is widely used in biochemical techniques and highly occurs in processing foods such as potato chips prepared at high temperatures. ACR is formed from reducing sugars and asparagine through the Maillard reaction. It exerts various harmful and toxic effects such as neurotoxicity both in humans and animal studies. The extensive damage of synaptic proteins, the formation of ACR-DNA adducts, degeneration of motor neurons, neurofilament reduction, are the most common neurological symptoms. The main metabolite of ACR metabolism is glycidamide, and it causes harmful effects as same as ACR. The main purpose of this study is to analyze the neurotoxic effects of ACR on various regions of the brain and its different mechanistic pathways that are involved in ACR neurotoxicity. The consumption of ACR-containing foods and its exposure are reduced by the human, leading to the reduction of toxic effects associated with ACR.