Some tests for mean residual life criteria based on the total time on test transform

A.M. Abouammoh, A. Khalique
{"title":"Some tests for mean residual life criteria based on the total time on test transform","authors":"A.M. Abouammoh,&nbsp;A. Khalique","doi":"10.1016/0143-8174(87)90104-1","DOIUrl":null,"url":null,"abstract":"<div><p>Let F be a life distribution with survival function <span><math><mtext>F</mtext><mtext> = 1 − </mtext><mtext>F</mtext></math></span> and finite mean <span><math><mtext>μ = ∫</mtext><msub><mi></mi><mn>0</mn></msub><msup><mi></mi><mn>∞</mn></msup><mtext> </mtext><mtext>F</mtext><mtext>(</mtext><mtext>x</mtext><mtext>)d</mtext><mtext>x</mtext></math></span>. The scaled total time on test transform is defined by <span><math><mtext>φ</mtext><msub><mi></mi><mn>F</mn></msub><mtext>(t) = (1/μ) ∫</mtext><msub><mi></mi><mn>0</mn></msub><msup><mi></mi><mn><mtext>F</mtext><msup><mi></mi><mn>−1(t)</mn></msup></mn></msup><mtext> </mtext><mtext>F</mtext><mtext>(x)</mtext><mtext>d</mtext><mtext>x</mtext></math></span>. In this paper, the properties of <span><math><mtext>φ</mtext><msub><mi></mi><mn>F</mn></msub><mtext>(t)</mtext></math></span> for some criteria of the mean residual life are investigated. These criteria include decreasing mean residual life average, decreasing harmonic mean residual life average, new better than used harmonic mean residual and new better than used mean residual life. Some test statistics for testing exponentially against all these mean residual life criteria are proposed. The distributions of the test statistics are investigated for small statistics samples. Powers of some of these tests are estimated by simulation.</p></div>","PeriodicalId":101070,"journal":{"name":"Reliability Engineering","volume":"19 2","pages":"Pages 85-101"},"PeriodicalIF":0.0000,"publicationDate":"1987-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0143-8174(87)90104-1","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reliability Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0143817487901041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Let F be a life distribution with survival function F = 1 − F and finite mean μ = ∫0 F(x)dx. The scaled total time on test transform is defined by φF(t) = (1/μ) ∫0F−1(t) F(x)dx. In this paper, the properties of φF(t) for some criteria of the mean residual life are investigated. These criteria include decreasing mean residual life average, decreasing harmonic mean residual life average, new better than used harmonic mean residual and new better than used mean residual life. Some test statistics for testing exponentially against all these mean residual life criteria are proposed. The distributions of the test statistics are investigated for small statistics samples. Powers of some of these tests are estimated by simulation.

基于试验变换总时间的平均剩余寿命准则的一些试验
设F为生存函数F = 1−F,有限均值μ =∫0∞F(x)dx的寿命分布。测试变换的标度总时间定义为φF(t) = (1/μ)∫0F−1(t) F(x)dx。本文研究了φF(t)对平均剩余寿命的一些判据的性质。这些准则包括平均剩余寿命均值递减、谐波平均剩余寿命均值递减、新平均剩余寿命优于旧平均剩余寿命和新平均剩余寿命优于旧平均剩余寿命。针对所有这些平均剩余寿命准则提出了一些指数检验统计量。研究了小统计量样本的检验统计量的分布。通过仿真估计了其中一些试验的功率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信